Tuesday, March 21, 2017

The Weirdest Animals on Earth: 12 Amazing Facts About Platypuses

What IS that? A photo by Stefan Kraft at Wikimedia Commons.
1. Platypuses are so strange, that when British scientists first encountered one, they thought it was a joke: A Governor of New South Wales, Australia, sent a platypus pelt and sketch to British scientists in 1798. Even in their first published scientific description of the species, biologists thought that this duck-beaked, beaver-bodied, web-footed specimen may be some Frankenstein-like creation stitched together as a hoax. But this is only the beginning of their oddities…

2. Platypuses are egg-laying mammals. Mammals are animals that have a backbone, are warm-blooded, and females produce milk for their young. Most females that nurse their young also carry their developing babies in their bodies and give birth to live young… But platypuses don’t play by those rules. Platypuses are monotremes, egg-laying mammals that include the platypus and four species of echidna. Most female mammals have two functional ovaries, but female platypuses, like most female birds, only have a functional left ovary. Once a year, a female platypus may produce a clutch of two or three small, leathery eggs (similar to reptile eggs), that develop in her uterus for 28 days. Because female platypuses don’t even have a vagina, when the eggs are ready, she lays them through her cloaca, an opening that serves for reproduction, peeing and pooping. (In fact, monotreme comes from the Greek for “one hole”). She then curls around them and incubates them for another 10 days until they hatch.



3. Platypuses sweat milk! Not only do female platypuses not have vaginas, they don’t have nipples either! Instead, lactating mothers ooze milk from pores in their skin, which pools in grooves on their bellies so the babies can lap it up. …And they’re not even embarrassed about it!

4. Adult platypuses are toothless. Baby platypuses (that is the actual technical term for them, by the way… not “puggles”, which would be way more fun) are born with teeth but they lose them around the time that they leave the breeding burrow. In their place are rigid-edged keratinized pads that they use as grinding plates. When they catch their prey (worms, bugs, shrimp, and even crayfish), they store it in their cheek pouches and carry it to the surface, where they use gravel to crush it in their toothless maw.

5. The platypus “duck bill” is a sensory organ used to detect electric fields. Muscles and neurons use electrical impulses to function, and these impulses can be detected by electroreceptors. Although common in shark and ray species, electroreception is rare in mammals, only having been discovered in monotremes and the Guiana dolphin. Platypuses have rows of around 40,000 electroreceptors on their highly sensitive bill, which they wave back and forth in the water, much like a hammerhead shark, to determine the location of their prey. It’s a good thing this sense is so sensitive, since they close their eyes, nose and ears every time they dive.



6. Platypuses don’t use their tails like beavers do. Whereas beavers use their large, flat, leathery tails for swimming and slapping the water to send signals, platypuses don’t use their tails for any of that. Platypuses have large, flat tails for storing fat in case of a food shortage. Unlike beaver tails, platypus tails are covered in fur, which the mothers use to snuggle with their incubating eggs.

A platypus ankle spur. Photo by E.Lonnon at Wikimedia Commons.
7. Male platypuses have venomous ankle spurs. Their venom is strong enough to kill small animals and to create excruciating pain in humans. Since only males have it and they produce more venom during the breeding season, we think its main function may be to compete for mates and breeding territories.

8. Platypuses are knuckle-walkers with a reptilian gait. Although they are well-built for swimming with their webbed feet and legs on the sides of their bodies, these traits make it quite awkward to get around on dry land. To walk, they pull in their webbing and walk on their knuckles, exposing their claws. Like reptiles and salamanders, platypuses flex their spines from side-to-side, supported by their sprawling legs.



9. Platypuses have unusually low body temperatures. As unusual as they are, platypuses are still mammals, which are defined, in part, by their ability to generate most of their own body heat with their metabolism. Platypuses do this as well, but whereas most mammals maintain body temperatures between 37-40 degrees C (99-104 degrees F), platypuses are happy with a body temperature of 32 degrees C (90 degrees F). This lower metabolism reduces the amount of calories they need to eat.

10. They have no stomach. Stomachs are specialized protein-digesting chambers of digestive tracts that contain protein-digesting enzymes and acids to activate them. Not all animals have them, but most carnivores do. The most common exceptions to this rule are fish… and platypuses. Why? We don’t know for sure, but many of these animals consume diets high in calcium carbonate, which is a natural antacid. If their own diet would constantly neutralize their stomach acid, then the stomach really isn’t going to do them any good anyway.

11. They have 10 sex chromosomes! Most mammals have two sex chromosomes, one from each parent. An individual that has two X chromosomes is usually female and an individual that has one X and one Y chromosome is usually male. Thus, female mammals pass along an X chromosome to each offspring and males can pass along an X or a Y. But platypuses are not content to be normal in any way…They have 10 sex chromosomes: 5 from mom and 5 from dad. All 5 chromosomes from mom are Xs, whereas a male sperm either contains 5 Xs or 5 Ys. Birds also have two sex chromosomes, but in birds, individuals with two of the same type are usually male and individuals with different chromosomes are usually female. Their system is called ZW, where the mammalian system is XY. The platypus X chromosome is more similar than the X chromosome of other mammals to the bird Z chromosome.

12. The platypus genome is as much of a hodgepodge as its body. Only 80% of the platypus’ genes are like other mammals. Some of their genes have only previously been found in birds, reptiles, fish, or amphibians.

To learn about more weird animals, go here.

References:

Scheich, H., Langner, G., Tidemann, C., Coles, R., & Guppy, A. (1986). Electroreception and electrolocation in platypus Nature, 319 (6052), 401-402 DOI: 10.1038/319401a0

Warren, W., Hillier, L., Marshall Graves, J., Birney, E., Ponting, C., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A., Yang, S., Heger, A., Locke, D., Miethke, P., Waters, P., Veyrunes, F., Fulton, L., Fulton, B., Graves, T., Wallis, J., Puente, X., López-Otín, C., Ordóñez, G., Eichler, E., Chen, L., Cheng, Z., Deakin, J., Alsop, A., Thompson, K., Kirby, P., Papenfuss, A., Wakefield, M., Olender, T., Lancet, D., Huttley, G., Smit, A., Pask, A., Temple-Smith, P., Batzer, M., Walker, J., Konkel, M., Harris, R., Whittington, C., Wong, E., Gemmell, N., Buschiazzo, E., Vargas Jentzsch, I., Merkel, A., Schmitz, J., Zemann, A., Churakov, G., Ole Kriegs, J., Brosius, J., Murchison, E., Sachidanandam, R., Smith, C., Hannon, G., Tsend-Ayush, E., McMillan, D., Attenborough, R., Rens, W., Ferguson-Smith, M., Lefèvre, C., Sharp, J., Nicholas, K., Ray, D., Kube, M., Reinhardt, R., Pringle, T., Taylor, J., Jones, R., Nixon, B., Dacheux, J., Niwa, H., Sekita, Y., Huang, X., Stark, A., Kheradpour, P., Kellis, M., Flicek, P., Chen, Y., Webber, C., Hardison, R., Nelson, J., Hallsworth-Pepin, K., Delehaunty, K., Markovic, C., Minx, P., Feng, Y., Kremitzki, C., Mitreva, M., Glasscock, J., Wylie, T., Wohldmann, P., Thiru, P., Nhan, M., Pohl, C., Smith, S., Hou, S., Renfree, M., Mardis, E., & Wilson, R. (2008). Genome analysis of the platypus reveals unique signatures of evolution Nature, 453 (7192), 175-183 DOI: 10.1038/nature06936

Tuesday, March 14, 2017

The Physiology of Your “Sense of Self”

Quick! Name all of your senses!

Now, close your eyes and wave your arms over your head. Which of those senses are helping you know where your arms are in space?

The answer is the often-forgotten sense of proprioception. Proprioception (derived from the Latin for “sense of self”) is an animal’s sense of its body’s position in space. We have several different specialized receptor cells that all detect a change in body position in different ways.

Grays muscle picture by Mikael Haggstrom
at Wikimedia Commons.
If you raise your arms over your head as if you are going to grab a pull-up bar, then some muscles in your back (like your trapezius muscles), shoulders (like your deltoids and rotator cuff muscles), and arms (like your triceps) will contract. Muscles are all connected with tendons to the bones they pull on. When a muscle contracts, its tendons are stretched. Specialized proprioceptor cells called Golgi tendon organs merge with tendons and detect when their corresponding muscle is being stretched. Together, they inform the brain about muscle tension in muscles all across the body.

Grays muscle picture by Mikael Haggstrom
at Wikimedia Commons.

However, while some muscles will contract during your movement, other muscles in your chest (like your pecs) and arms (like your biceps) will stretch. Each muscle contains muscle spindles, another kind of specialized proprioceptor cell. Muscle spindles are wrapped around individual muscle fibers within the muscles. They send signals to the brain to let it know when the muscle is stretched and by how much.

Joint receptors are specialized proprioceptor cells located between bones in the capsular tissue of joints. When the angle of a joint changes, the bones and tissues put pressure on the joint receptor, causing it to send a signal to the brain. Your brain collects information from all of your Golgi tendon organs, muscle spindles and joint receptors to know the angle of each joint and the tension and length of each muscle in your body, and thus, your body’s position in space.

gif by Extremistpullup at Wikimedia Commons.
Some animals, and some individuals, are better at this than others. This guy should be pretty proud of his proprioceptive abilities (and strength). But then again, let’s see him try this:



Tuesday, March 7, 2017

Caught in My Web: Perplexing Animal Behaviors

Image by Luc Viatour at Wikimedia Commons.
Sometimes animals behave in such an odd manner, that even the animal behaviorists aren't sure what the heck they are doing or why. So for this edition of Caught in My Web, we just wonder.

1. Last month, a dog was hit and killed by a car. His fellow doggy-companion then used his nose to bury him. Was this a funeral? Is this just canine burying behavior? We don't know, but it's been seen before. This video is from 2013:



And here is another from 2015:


2. Have you seen this video of turkeys circling a dead cat?

3. An African elephant approaches a white rhino with a branch across his nose. Was he trying to play or was he bring aggressive? Either way, the rhino wasn't taking any chances. Watch the exchange here.

4. A South American Magellanic penguin swims 5,000 miles every year to be reunited with the man who saved his life. Read the heartwarming story here.

5. An octopus inflates itself like a giant balloon across the ocean floor and scientists can't agree if it is hunting or showing defense behavior. What do you think?