Showing posts with label octopuses. Show all posts
Showing posts with label octopuses. Show all posts

Sunday, October 13, 2019

4 Real-Life Monsters

A repost of an original article published October 26, 2015.

During the Halloween season, we find ourselves surrounded by monsters in movies, stores and decorations. We laugh at the ridiculousness of it all, oblivious to the fact that there are true monsters on our planet today! Mind you, these are not monsters in that they are evil, but they do have many of the same abilities and inclinations of our own mythical werewolves, vampires, zombies and shape-shifters.


Werewolf birds:


A Barau's petrel. Photo by SEOR
available at Wikimedia Commons.
Barau’s petrel is a migrating sea bird that is most active during nights with a full moon. Researchers tied bio-loggers on the birds’ feet to track their activity levels and found that under the full moon, the birds spent nearly 80% of these moonlit nights in flight! It is thought that since these birds migrate longitudinally (parallel with the equator), they can’t use changes in day length as a cue to synchronize their breeding, so they use the phases of the moon instead.


Vampire bats:


Three different bat species feed solely on blood: the common vampire bat, the hairy-legged vampire bat and the white-winged vampire bat. Feeding on blood is not uncommon – The actual term for it is hematophagy, and it is common in insects (think of those pesky mosquitos) and leeches. Although we don’t commonly think of it this way, blood is a body tissue and, like meat, it is rich in protein and calories. The reason it has not become a more popular food source among mammals is probably because it is so watered down (literally) compared to meat, that it can’t provide enough nutrition to sustain a large warm-bodied mammal. This is where our little vampire bat friends come in… small, stealthy, and with specialized saliva that prevents their victims’ blood from clotting, these guys are able to take advantage of this abundant resource, drinking up to half of their body weight in blood every night.



Zombees:


Scientists have recently discovered some strange honey bees: They mindlessly leave their hives in the middle of the night and fly in circles, often towards lights. It turns out that these honey bees are being parasitized by a species of phorid fly called the zombie fly. Female phorid flies lay their eggs inside the abdomens of honey bees, where the eggs hatch into larvae. The larvae feed on the insides of their bee hosts until they are mature enough to leave through the poor bee’s neck (the honey bee is generally dead by this time). Once out, the zombie flies develop into adults so they can breed and start the cycle anew with a new bee host. This phenomenon is still in the early stages of discovery, so if you would like to get involved in this project by watching honey bees in your area, check out ZomBee Watch, a citizen science project to track this zombie infestation.



Shape shifters:


The mimic octopus is a small harmless octopus that lives on the exposed shallow sandy bottoms of river mouths. To avoid its many predators it has developed an amazing strategy: it pretends to be something else, morphing its body into new shapes, like the shape of a deadly lion-fish, a poisonous flatfish, a venomous banded sea-snake, or any number of other animals that live in the area. Not only does the mimic octopus change its shape, it also changes its behavior to match its “costume” to convincingly fool predators. Most cephalopods, which include octopuses, are well-known for their ability to change the color, pattern and texture of their skin to blend in with rocks, coral and plants. Furthermore, octopuses do not have rigid skeletal elements, which allows their bodies great flexibility in the forms they imitate. But this ability to change both physical appearance and behavior to switch back and forth among imitations of multiple species is unique to this astounding shape shifter.


Tuesday, October 30, 2018

Nature's Halloween Costumes

A repost of an original article from October 23, 2013.

Image by Steve at Wikimedia Commons.
It seems like everyone is racking their brains to come up with a great Halloween costume. But we’re not the only ones to disguise ourselves as something we’re not. Many animals put on costumes just like we do. Take this gharial crocodile for example (do you see him?), covering himself in parts of his environment to hide.

Other animals, like this tawny frogmouth below, develop physical appearances that help them blend in with their surroundings. When threatened, these birds shut their eyes, erect their feathers and point their beak in such a way to match the color and texture of the tree bark.

Image by C Coverdale at Wikimedia Commons.
Rather than hide, some animals have a physical appearance to disguise themselves as other species that are often fierce, toxic or venomous. This type of mimicry is called Batesian mimicry, named after Henry Walter Bates, the English naturalist who studied butterflies in the Amazon and gave the first scientific description of animal mimicry. This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of the Amazon Valley: Heliconiidae, illustrates Batesian mimicry between various toxic butterfly species (in the second and bottom rows) and their harmless mimics (in the top and third rows).

This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of
the Amazon Valley: Heliconiidae is available on Wikipedia Commons.
The bluestriped fangblenny takes its costume another step further, by changing its shape, colors, and behavior to match the company. This fish changes its colors to match other innocuous fish species that are around so it can sneak up and bite unsuspecting larger fish that would otherwise bite them back! Learn more about them here.

The fish on the far left is a juvenile cleaner wrasse in the act of cleaning another fish. The two fish in
the middle and on the right are both bluestriped fangblennies, one in its cleaner wrasse-mimicking
coloration (middle) and the other not (right). Figure from the Cheney, 2013 article in Behavioral Ecology.
But the Master of Disguise title has got to go to the mimic octopus. This animal can change its color, shape and behavior to look and behave like a wide range of creatures, including an innocuous flounder, a poisonous lionfish, or even a dangerous sea snake! Check it out in action:




Tuesday, May 9, 2017

The Best Moms in the Animal Kingdom

Moms are really important to life on Earth, as evidenced by the fact that maternal care is fairly common across the animal kingdom. In most species, females produce fewer, larger, and costlier eggs than males do sperm. Therefore, it is usually beneficial to females to maximize the possible success of each one, sometimes by gestating them inside their own bodies (as mammals do), or incubating the eggs until they are ready to hatch (as birds do), or by providing prolonged protection, food and training until they are ready to take on the world for themselves. But there is still a lot of variation in how and how much each mother gives to her offspring. Here are some of the best moms in the animal kingdom:

1. The Endurance Prize goes to orangutans: Orangutan infants cling to their moms’ bellies non-stop for the first four months of their life and they continue to completely depend on their moms for the first two years for food and transport. Their moms will continue to carry them often until they are five and will sometimes continue to breastfeed them until they are eight! After that, the young still stay close to mom, learning from her and helping her until they are sometimes in their teens.

An orangutan mama and toddler. Photo by Mistvan at Wikimedia Commons.

2. The Provider Prize goes to the crab spider, Diaea ergandros: These crab spider moms create a brood chamber and nest out of eucalyptus leaves. They guard their eggs and then spiderlings, providing protection and prey for food. These moms also make extra eggs, just for their babies to eat, and finally, they give themselves… quite literally! The babies eat their mothers completely in a rare behavior called matriphagy.


3. The Pregnancy Prize goes to elephants: Elephants are pregnant for about 22 months… nearly two years! And a baby elephant is not light to carry around… by the time it is born, it will weigh nearly 250 pounds! Just the thought of it makes me uncomfortable. So why would elephant moms need to gestate their young for such an incredibly long time? It is thought that the long gestation is needed for the proper development of their brains, so they are born with the complex cognitive and social skills needed to survive in their herd.

An African elephant family plays in the hot sun. Photo by Bernard Dupont at Wikimedia Commons.

4. The Brooding Prize goes to a deep-sea octopus: Two years is a very long time to carry a developing baby inside your body, but some animals care for their developing empryos ouside of their bodies with a behavior called brooding. Although brooding may sound easier than pregnancy, it is not for the faint of heart. A deep-sea octopus was observed brooding her eggs in the Monterey Submarine Canyon off central California for 53 months… That is nearly 4 and a half years! And that whole time she did not eat, but instead guarded and aerated the water around her precious eggs.

A deep-sea octopus. Photo by NOAA at Wikimedia Commons.

5. The Multi-Generational Prize goes to humans: Many human moms are not only good mothers, but also good grandmothers. Grandparenting is extremely rare in the animal kingdom (the first documented case of grandparenting in non-humans was as recent as 2008) and human females excel at it. They provide care, advice, resources, lessons and hugs to increase the success of their offspring and grand-offspring… It’s amazing other species haven’t picked up on this amazing secret yet!

The best moms in the animal kingdom. Photos by Sarah Jane Alger.

Tuesday, March 7, 2017

Caught in My Web: Perplexing Animal Behaviors

Image by Luc Viatour at Wikimedia Commons.
Sometimes animals behave in such an odd manner, that even the animal behaviorists aren't sure what the heck they are doing or why. So for this edition of Caught in My Web, we just wonder.

1. Last month, a dog was hit and killed by a car. His fellow doggy-companion then used his nose to bury him. Was this a funeral? Is this just canine burying behavior? We don't know, but it's been seen before. This video is from 2013:



And here is another from 2015:


2. Have you seen this video of turkeys circling a dead cat?

3. An African elephant approaches a white rhino with a branch across his nose. Was he trying to play or was he bring aggressive? Either way, the rhino wasn't taking any chances. Watch the exchange here.

4. A South American Magellanic penguin swims 5,000 miles every year to be reunited with the man who saved his life. Read the heartwarming story here.

5. An octopus inflates itself like a giant balloon across the ocean floor and scientists can't agree if it is hunting or showing defense behavior. What do you think?

Friday, April 1, 2016

Octopus Thoughts Interpreted!

This is AMAZING! Scientists have developed a device that translates octopus gestures into English! Here is what this octopus was thinking:

Monday, November 9, 2015

Caught in My Web: The Intelligence and Creativity of Crows, Octopuses, Monkeys, Fish and Dogs

Image by Luc Viatour at Wikimedia.
For this edition of Caught in My Web, we marvel at animal intelligence.

1. Joshua Klein talks about crow intelligence and their potential for training in this fun TED talk.

2. Jason Goldman at io9 explains an amazing discovery that Atlantic cod can also innovate to solve problems.

3. Sarah Williams at Science explains research out of Harvard that shows that untrained rhesus monkeys can do math and we can use this to learn about how we think.

4. A veined octopus shows off his imagination as he creates a “hiding” place:


5. And last, but not least, three shelter dogs were taught to drive! Here are the results:

Monday, October 26, 2015

4 Real-Life Monsters

During the Halloween season, we find ourselves surrounded by monsters in movies, stores and decorations. We laugh at the ridiculousness of it all, oblivious to the fact that there are true monsters on our planet today! Mind you, these are not monsters in that they are evil, but they do have many of the same abilities and inclinations of our own mythical werewolves, vampires, zombies and shape-shifters.

Werewolf birds:


A Barau's petrel. Photo by SEOR
available at Wikimedia Commons.
Barau’s petrel is a migrating sea bird that is most active during nights with a full moon. Researchers tied bio-loggers on the birds’ feet to track their activity levels and found that under the full moon, the birds spent nearly 80% of these moonlit nights in flight! It is thought that since these birds migrate longitudinally (parallel with the equator), they can’t use changes in day length as a cue to synchronize their breeding, so they use the phases of the moon instead.


Vampire bats:


Three different bat species feed solely on blood: the common vampire bat, the hairy-legged vampire bat and the white-winged vampire bat. Feeding on blood is not uncommon – The actual term for it is hematophagy, and it is common in insects (think of those pesky mosquitos) and leeches. Although we don’t commonly think of it this way, blood is a body tissue and, like meat, it is rich in protein and calories. The reason it has not become a more popular food source among mammals is probably because it is so watered down (literally) compared to meat, that it can’t provide enough nutrition to sustain a large warm-bodied mammal. This is where our little vampire bat friends come in… small, stealthy, and with specialized saliva that prevents their victims’ blood from clotting, these guys are able to take advantage of this abundant resource, drinking up to half of their body weight in blood every night.



Zombees:


Scientists have recently discovered some strange honey bees: They mindlessly leave their hives in the middle of the night and fly in circles, often towards lights. It turns out that these honey bees are being parasitized by a species of phorid fly called the zombie fly. Female phorid flies lay their eggs inside the abdomens of honey bees, where the eggs hatch into larvae. The larvae feed on the insides of their bee hosts until they are mature enough to leave through the poor bee’s neck (the honey bee is generally dead by this time). Once out, the zombie flies develop into adults so they can breed and start the cycle anew with a new bee host. This phenomenon is still in the early stages of discovery, so if you would like to get involved in this project by watching honey bees in your area, check out ZomBee Watch, a citizen science project to track this zombie infestation.



Shape shifters:


The mimic octopus is a small harmless octopus that lives on the exposed shallow sandy bottoms of river mouths. To avoid its many predators it has developed an amazing strategy: it pretends to be something else, morphing its body into new shapes, like the shape of a deadly lion-fish, a poisonous flatfish, a venomous banded sea-snake, or any number of other animals that live in the area. Not only does the mimic octopus change its shape, it also changes its behavior to match its “costume” to convincingly fool predators. Most cephalopods, which include octopuses, are well-known for their ability to change the color, pattern and texture of their skin to blend in with rocks, coral and plants. Furthermore, octopuses do not have rigid skeletal elements, which allows their bodies great flexibility in the forms they imitate. But this ability to change both physical appearance and behavior to switch back and forth among imitations of multiple species is unique to this astounding shape shifter.


Monday, August 24, 2015

The Weirdest Animals on Earth: 12 Amazing Facts About Octopuses


Photo of a day octopus by
Ahmed Abdul Rahman available
at Wikimedia Commons.
1. The plural of octopus is octopuses. How an English word is pluralized depends, in part, on its origins. Latin words that end in –us are generally pluralized by replacing the –us with an –i (the plural of alumnus, for example, is alumni). But octopus is not Latin – It comes from the ancient Greek word októpous, whose plural is októpodes. Although octopodes is technically correct, since it has been adopted into the English language, the word is now pluralized in the English way, making it octopuses. So octopi is commonly used but not technically correct, octopodes is technically correct but not commonly used and octopussies is just plain wrong.

2. Octopuses are mollusks. This means that they are not only closely related to squid and cuttlefish, but also to clams, oysters, snails and slugs.

3. Octopuses are crazy-smart. They can solve problems, learn from watching others, use tools, and remember experiences. They even have personalities and play with toys. Check this out:



4. Octopuses have nine brains! Rather than a large centralized brain like ours, octopus brains are more like the internet. Their main CPU is a fairly small brain in their head, but each of their eight arms has an additional brain of its own. In fact, two-thirds of an octopus’ neurons are in the arms, which can independently attach to things, push things, and even smell things. They can even react after they have been severed! Not only that, but their severed arms recognize their previous owner:



5. If an octopus loses an arm, it can grow back. Those crazy arms are like the brooms in Disney's Sorcerer's Apprentice in Fantasia!

6. Octopuses are amazing camouflage artists. Their soft bodies can squeeze into ridiculously small cracks and crevices and take on any number of shapes. A 50-pound octopus, for example, can squeeze through a 2-inch hole! They can also change the color and texture of their skin to match their background.


The mimic octopus, the ultimate master of disguise, doesn’t just imitate their background, but also flounders, starfish, poisonous lionfish, and sea snakes.



A vertebrate eye (left) versus an octopus eye (right).
1: Retina, 2: Nerve fibers, 3: Optic nerve, 4: Blind spot.
Image by Jerry Crimson Mann at Wikimedia.
7. Octopuses don’t have visual blind-spots. Most animal eyes detect light patterns when light travels to the retina (the layer in the back of the eye) and falls on photoreceptor cells, causing the cells to send electrical signals through the optic nerve to the brain. Vertebrate photoreceptor cells face backwards, so their nerve fibers come in front of the retina and then exit the eye together through the optic nerve, creating a small region in the back of the eye with no photoreceptor cells. If light falls on this spot, we literally will not see it, although our brain will compensate for this missing light by imagining what should be there based on the rest of what we see. We call this our blind spot. You can test your blind spot by closing your left eye and focusing your right eye on the “R” below. Move your face towards or away from the screen until the “L” disappears. You can test your left eye by staring at the “L” in the same way.
In octopus eyes, the photoreceptor cells face forwards and the nerve fibers go behind the retina. This means that they have a continuous layer of photoreceptor cells and no blind spot.

8. Octopuses are more blue blooded than police officers. Their blood is truly blue, due to the fact that they don’t have hemoglobin, our respiratory pigment that contains iron and turns red when it binds to oxygen. Rather, they have hemocyanin, which contains copper and turns blue when oxygen binds to it.

9. Octopuses have three hearts! They have two small hearts that each pump blood through the gills and a main systemic heart that collects the blood and pumps it through the circulatory system.

10. Octopus ink is a defensive chemical concoction. It not only obscures the view of an attacker, but it also contains a chemical that irritates the predator’s eyes and temporarily paralyzes its sense of smell.

11. Octopuses bite with a bird-like beak and venomous saliva, which is mostly used to subdue prey. Of the approximately 300 octopus species, only the small blue-ringed octopus is known to be deadly to humans.

12. Octopuses die after they mate for the first time. And they mate in an odd way too: males use the tip of their third arm on the right to either insert their spermatophores (sperm packets) directly into the female’s tubular breathing funnel or he just hands it to her (The tip of the third right arm can be used to tell if an octopus is male or female). If he hands it to her, she accepts it with one of her right arms (we don’t know why they’re right-handed this way). Then the males go off to die. The females eventually lay up to 400,000 fertilized eggs, although they can wait months before they do this. She tends them and guards them at the exclusion of all else until they hatch, at which point her body rapidly deteriorates as her cells die off.


Wednesday, October 23, 2013

Nature’s Halloween Costumes

Image by Steve at Wikimedia Commons.
It seems like everyone is racking their brains to come up with a great Halloween costume. But we’re not the only ones to disguise ourselves as something we’re not. Many animals put on costumes just like we do. Take this gharial crocodile for example (do you see him?), covering himself in parts of his environment to hide.

Other animals, like this tawny frogmouth below, develop physical appearances that help them blend in with their surroundings. When threatened, these birds shut their eyes, erect their feathers and point their beak in such a way to match the color and texture of the tree bark.

Image by C Coverdale at Wikimedia Commons.
Rather than hide, some animals have a physical appearance to disguise themselves as other species that are often fierce, toxic or venomous. This type of mimicry is called Batesian mimicry, named after Henry Walter Bates, the English naturalist who studied butterflies in the Amazon and gave the first scientific description of animal mimicry. This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of the Amazon Valley: Heliconiidae, illustrates Batesian mimicry between various toxic butterfly species (in the second and bottom rows) and their harmless mimics (in the top and third rows).

This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of
the Amazon Valley: Heliconiidae is available on Wikipedia Commons.
The bluestriped fangblenny takes its costume another step further, by changing its shape, colors, and behavior to match the company. This fish changes its colors to match other innocuous fish species that are around so it can sneak up and bite unsuspecting larger fish that would otherwise bite them back! Learn more about them here.

The fish on the far left is a juvenile cleaner wrasse in the act of cleaning another fish. The two fish in
the middle and on the right are both bluestriped fangblennies, one in its cleaner wrasse-mimicking
coloration (middle) and the other not (right). Figure from the Cheney, 2013 article in Behavioral Ecology.
But the Master of Disguise title has got to go to the mimic octopus. This animal can change its color, shape and behavior to look and behave like a wide range of creatures, including an innocuous flounder, a poisonous lionfish, or even a dangerous sea snake! Check it out in action:




Wednesday, February 20, 2013

Did that Rock Just Ink on Me? (A Guest Post)

By Sam Brunner and Ian Straus


Image from NOAA.
Cephalopods, like octopuses, squid, and cuttlefish, are well known for their ability to alter the color and patterns on their bodies for better camouflage, mimicry, and even communication. By developing a unique set of camouflage tools, cephalopods excel at not being seen or being seen but not detected as a cephalopod. There are videos all over the internet showcasing how squid can terrify divers with their flashing red displays, or how some octopuses avoid their predators by mimicking the local venomous snakes. This video provides the perfect example of an octopus using its incredible camouflage to become invisible while convincing you it is merely a clump of algae.




You see, where many animals have lowly organelles in their skin cells responsible for pigments, cephalopods are unique in having a whole organ dedicated to this task. They’re called chromatophores. Each chromatophore is made up of colored pigment granules held in the ever so eloquently named cytoelastic sacculus, which is surrounded by 15 to 25 radially arranged muscle cells (like spokes on a wheel). Each muscle cell is also associated with a neural axon and its supportive glial cells, which puts it under the control of the nervous system.

Image created by Ian Straus.
So, when an octopus wants to change color, a signal travels from the brain and down the neural axon to the chromatophore, telling the muscles to contract. The muscle contraction pulls on the pigment-filled sac, stretching it to change its translucence and thereby changing the amount of color showing through. The chromatophores can produce yellow, orange, red, brown, and occasionally black pigments. The intensity of the color depends on how many muscle fibers are contracted, and therefore how much the sac expands and the pigment is spread out. Once a chromatophore develops, it will stay put for the rest of the animal’s life. As the animal grows, new, smaller chromatophores develop in the spaces between the old ones. These new organs are only able to produce yellow pigment at first, but darken as they get older.

Dieter Froesch of the Zoological Station of Naples conducted an experiment using the common octopus (Octopus vulgaris) to determine which of their nerves control the chromatophore organs in each part of the body. Each octopus examined was anaesthetized, had a nerve cut and was then checked a few days later for the results.

Froesch found that of the thirty nerves leaving the brain of O. vulgaris, ten have control over chromatophores, with each nerve controlling a different region of the body. These regions have well defined borders with no overlap. The head region alone is controlled by five different nerves, especially around the eyes. This suggests that fine control over color patterns around the eye may play an important role in effective camouflage. Furthermore, the coloration and chromatophores in one area of the body, the funnel, didn’t appear to be controlled by any of the nerves cut in this experiment.


This image shows the different chromatophore regions that each nerve controls. The funnel, which does not have nerve-controlled chromatophores, is the tube near the eye. Image is from Froesch’s Marine Biology paper (1973).
In most cephalopods, vision is the most important sense. Information about their surroundings is processed in vision regions of the brain, which then send along information to chromatophore regions of the brain. The chromatophore brain regions, which contain motor neurons, send signals to the chromatophores throughout the body telling them to contract. So, if an octopus sees a bright orange coral structure, the chromatophores will contract in a way that results in bright orange skin being displayed.

The vision-chromatophore pathway may be the most important part of cephalopod camouflage, but it isn’t the only set of structures that play a role. Leucophores allow for white pigment and reflective iridophores are responsible for blues and greens. Cuttlefish and many octopuses also have muscles throughout the skin arranged into papillae, which can form bumps or spikes that transform the texture of the animal into that of seaweed or an inconspicuous rock. In Octopus vulgaris, all these components are arranged into 1 mm wide units distributed across the skin, with the leucophores and iridophores in the central region, papillae at the exact center, and chromatophores distributed throughout. This complex physiological system grants cephalopods the greatest array of possible camouflages and firmly positions them as the coolest of the invertebrates.

Want to know more?  Check these out:

1. Froesch, D. (1973). Projection of chromatophore nerves on the body surface of Octopus vulgaris Marine Biology, 19 (2), 153-155 DOI: 10.1007/BF00353586

2. Messenger JB (2001). Cephalopod chromatophores: neurobiology and natural history. Biological reviews of the Cambridge Philosophical Society, 76 (4), 473-528 PMID: 11762491

Wednesday, February 29, 2012

Playing “Good Cop, Bad Cop” with Octopuses

Have you ever seen an octopus in an aquarium, or maybe even in the ocean, and thought, “I know you!”? No? Well, they might think that when they see you!

We’ve known for some time that many domestic animals, like dogs, can tell us people apart. It turns out that a lot of animal species can recognize individual people. But how do we humans know that? It’s not like you can walk right up to an animal and say “Hey! Remember me?” ...Well, I guess you could do that, but how would you interpret the answer?

Imagine everything that an animal would have to be capable of to be able to recognize different people: the animal would have to be able to discriminate, learn and remember. Those are pretty complex tasks. Despite our stereotypes of molluscs, octopuses (not “octopi”) are actually quite good at all of these things. They are visual animals that can differentiate between abstract shapes, remember visual patterns, and be conditioned (Conditioning is a process by which an animal learns to associate a behavior with some previously unrelated stimulus). Additionally, many people acknowledge octopuses as the most intelligent (and coolest) of all invertebrates. Furthermore, there have been several anecdotal reports of octopuses recognizing individual people. Some octopuses at aquariums consistently approach the keepers that feed them, even when the keeper is in a crowd of other people. One octopus being trained in a lever-pressing task regularly chose to squirt the researcher in the face rather than press the lever. Another octopus apparently only jetted water at a particular night guard. So octopuses seem like a pretty good species to test individual human recognition (and to test for a sense of humor, but that is for another day).

If you were an octopus, could you tell these two people apart?
Photo by Veronica von Allworden from a figure in the paper
in The Journal of Applied Animal Welfare Science
Roland Anderson and Stephanie Zimsen at the Seattle Aquarium, Jennifer Mather at the University of Lethbridge, and Mathieu Monette at the University of Brussels, set out to do just that. They caught eight giant Pacific octopuses from the wild and took them to the Seattle Aquarium. For 5 days a week over two weeks, they repeated the following process: Two identically-dressed testers played the roles of “good cop” and “bad cop”. Twice a day for each animal, each of the two testers would separately open the tank so they could be seen by the octopus and record its behavior: movements, inking, blowing water, funnel direction, skin color and texture, respiration rate, and the presence or absence of an eyebar (color-changing skin around the eye that may darken due to disturbance). Then, one of them would feed the octopus, and the other would gently poke it with a bristly stick (which was not harmful, but probably pretty irritating). The “good cop” always fed the octopus and the “bad cop” always poked it, although the people that played “good cop” and “bad cop” were different for each animal. The order of the “good cop” and “bad cop” treatments was determined randomly each day. On the last day of the second week, each tester opened the tanks, looked in, and recorded the animals’ behavior.
A giant Pacific octopus displaying his eyebar (shown with the white arrow)
in the wild. Photo by Veronica von Allworden from a figure in the paper in
The Journal of Applied Animal Welfare Science
In the first day or two of testing, octopuses generally moved away from both testers equally, did not have a difference in where their water jets faced or in displaying their eyebars. But in the second week, octopuses generally responded to testers that fed them by moving towards them, aiming their water jets away from them and not displaying eyebars; they generally responded to testers that poked them by displaying their eyebars, aiming their water jets at them, and moving away from them. And some of the octopuses (the larger ones) had faster breathing rates when they saw the testers that poked them than when they saw the testers that fed them.

So octopuses can recognize individual humans, and they treat people differently depending on how they have been treated by the humans. …Hmmm… If octopuses can do it, imagine what other species may be able to do it. Meditate on that the next time you interact with an animal.

Now add individual human recognition to other things we know octopuses can do, like learn and remember skills, play with toys, express personalities, and detect things by vision and smell. And they can do this:

and this:

and this:

I mean really, is there anything octopuses can’t do?

Do you want to get to know the octopuses from this study? Learn to recognize them at the Seattle Aquarium or the Seaside Aquarium, where they are now on exhibit.

Want to know more? Check these out:

1. Anderson RC, Mather JA, Monette MQ, & Zimsen SR (2010). Octopuses (Enteroctopus dofleini) recognize individual humans. Journal of applied animal welfare science : JAAWS, 13 (3), 261-72 PMID: 20563906

2. Mather, J.A., Anderson, R.C and Wood, J.B. (2010). Octopus: The Ocean’s Intelligent Invertebrate. Timber Press, Portland, OR.

3. Octopus Chronicles, a Scientific American blog dedicated to everything fascinating and amazing about octopuses

4. AnimalWise, a blog about animal cognition