Showing posts with label preference. Show all posts
Showing posts with label preference. Show all posts

Tuesday, March 26, 2019

Interrupting Insects

A reposting of an original article from The Scorpion and the Frog.

What do you think of when I say “communicate”? Most likely, you are imagining people communicating by an auditory mode (talking and listening, making expressive sounds) or by a visual mode (observing body language, reading and writing). As a species, humans inherently rely heavily on our hearing and vision to perceive the world around us and so it makes sense that we communicate with one another using these modalities. But animal species are incredibly diverse in their means of perceiving their worlds and their modes of communication. Because we have been so focused on studying animal signals that we can perceive, we have only recently begun to more actively explore animal communication in these other modes. One of these modes is soundless surface vibrations.

The photo is of an adult Tylopelta gibbera on a host plant stem
(photo (c) Rex Cocroft).
Despite the fact that we do not perceive most animal surface vibration signals around us, vibrational communication is very common, especially among insects and spiders. Rex Cocroft at the University of Missouri at Columbia and Rafa Rodríguez at the University of Wisconsin at Milwaukee point out in a review of vibrational communication that over 195,000 species of insects communicate using soundless surface vibrations. We can experience many of these substrate vibration signals by broadcasting them through a speaker as an airborne vibration (which we perceive as sound).

Vibrational signals serve a number of functions in the insect worlds. Social insects, like ants, termites, and bees, often use vibrational signals to coordinate foraging. Groups of juvenile thornbug treehoppers vibrate when a predator approaches, calling in the mother to defend them. Males of many species have been found to use vibrational signals to attract females and the females often use these signals to choose a mate.

Vibrational signals are carried through a solid substrate, so they can only travel as far as the substrate is continuous and they are affected by attributes of the substrate (like changes in density). Because of these constraints, most vibrational signals can only travel about the length of a human arm. Many insects that use vibrational communication live on host plants, and it is these host plants that transmit the vibration signals. These animals face many challenges in transmitting their signals to the intended recipient. For example, wind, rain, and environmental sounds can create competing vibrations (background noise). In addition to environmental background noise, the vibrational soundscape of a given plant stem will likely include many signaling individuals, often of many species. Not only are there difficulties in getting your signal to your intended audience, but there are also risks of eavesdropping predators and competitors.

Frédéric Legendre, Peter Marting and Rex Cocroft at the University of Missouri at Columbia, demonstrate the social complexities of vibrational communication in a new study of competitive signaling in a treehopper species, Tylopelta gibbera. Tylopelta gibbera is a small treehopper in the southern United States, Mexico and Guatemala, that only lives on plants from the Desmodium genus. Males will attract and court females with vibrational signals and interested females will respond to the male with vibrational signals of their own. However, many individuals can often be found on a single plant and if two signaling males are present, the receptive female will typically respond to both of them and only mate with one (generally the first one she encounters). What is a competing male to do?

Listen to a male Tylopelta gibbera advertisement signal here.


The researchers performed a series of experiments, in which they observed treehoppers on potted host plants in the lab. With this set-up, they could control the environmental conditions, decide the number of males and females on the plant, record vibrational signals and play them back. They found that once a male signals and detects a female response, he will actively search for her along the plant, alternating signals and steps in a “Marco Polo” mating game until he finds her. Males found the females almost twice as fast if they were the only male on the plant, indicating that the presence of a second male on the plant somehow interferes with their ability to locate the female. Also, when two males were on the plant, they produced a new signal type that was never produced by a lone male on a plant. Males that had no male competition only produced signals that had a whine sound, followed by a series of pulses (and the female would then immediately respond with a harmonic sound of her own). This male signal is called the advertisement signal. Males that had a competing male on the plant would produce an additional signal that was a short tonal note. Interestingly, these males often produced this second signal at the same time that their competitor was advertising himself. Hmmm… could this be a masking signal used to interrupt the competitor? How could you figure that out?

This figure from Legendre, Marting and Cocroft's 2012 Animal Behaviour paper shows
the whine and pulses of a male advertisement signal (top) and a histogram of when the
masking signal occurs in relation to the timing of the advertisement signal (bottom).
First, the researchers asked, “When do males produce this second signal?” The researchers put two males on a plant with one female and recorded their vibrations. They found that in this situation, males typically produced this second signal while his competitor was just beginning the pulse section of his advertisement signal. Next, the researchers played back recordings of male advertisement signals followed by female responses to a lone male on a plant. All of the males tested produced the masking signal during the pulse section of the male advertisement signal on the recording.

Don't you hate it when someone does this?

Next, the researchers asked, “How do females respond to this second signal?” On plants with one female and two males, females didn’t respond as much to advertisement signals overlapped by a second signal as they did to advertisement signals alone. The researchers then played recordings of male advertisement signals to lone females on the plants. Females responded significantly more often if the advertisement signal was not overlapped by a masking signal.

So, male treehoppers get an edge up on getting the girl by interrupting the other competing males. Sneaky buggers!

Want to know more? Check these out:


1. COCROFT, R., & RODRÍGUEZ, R. (2005). The Behavioral Ecology of Insect Vibrational Communication BioScience, 55 (4) DOI: 10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2

2. Legendre, F., Marting, P., & Cocroft, R. (2012). Competitive masking of vibrational signals during mate searching in a treehopper Animal Behaviour, 83 (2), 361-368 DOI: 10.1016/j.anbehav.2011.11.003


3. A Japanese research team has harnessed this phenomenon to create a remote-control that makes annoying people stop talking. Find out more at the blog Gaines on Brains!

Tuesday, March 5, 2019

Hey Hey! We’re The Monkeys!

 Updated and reposted from March 6, 2013.

A tamarin rock star
(photographed by Ltshears at Wikimedia)
Our moods change when we hear music, but not all music affects us the same way. Slow, soft, higher-pitched, melodic songs soothe us; upbeat classical music makes us more alert and active; and fast, harsh, lower-pitched, dissonant music can rev us up and stress us out. Why would certain sounds affect us in specific emotional ways? One possibility is because of an overlap between how we perceive music and how we perceive human voice. Across human languages, people talk to their babies in slower, softer, higher-pitched voices than they speak to adults. And when we’re angry, we belt out low-pitched growly tones. The specific vocal attributes that we use in different emotional contexts are specific to our species… So what makes us so egocentric to think that other species might respond to our music in the same ways that we do?

A serene tamarin ponders where he placed
his smoking jacket (photographed by
Michael Gäbler at Wikimedia)
Chuck Snowdon, a psychologist and animal behaviorist at the University of Wisconsin in Madison, and David Teie, a musician at the University of Maryland in College Park, teamed up to ask whether animals might respond more strongly to music if it were made specifically for them.

Cotton-top tamarins are squirrel-sized monkeys from northern Colombia that are highly social and vocal. As in humans (and pretty much every other vocalizing species studied), they tend to make higher-pitched tonal sounds when in friendly states and lower-pitched growly sounds when in aggressive states. But tamarin vocalizations have different tempos and pitch ranges than our tempos and pitch ranges.

Chuck and David musically analyzed recorded tamarin calls to determine the common attributes of the sounds they make when they are feeling friendly or when they are aggressive or fearful. Then they composed music based on these attributes, essentially creating tamarin happy-music and tamarin death metal. They also composed original music based on human vocal attributes. They played 30-second clips of these different music types to pairs of tamarins and measured their behavior while the song was being played and for the first 5 minutes after it had finished. They compared these behavioral measures to the tamarins’ behavior during baseline periods (time periods not associated with the music sessions).

As the researchers had predicted, tamarins were much more affected by tamarin music than by human music. Happy tamarin music seemed to calm them, causing the tamarins to move less and eat and drink more in the 5 minutes after the music stopped. Compared to the happy tamarin music, the aggressive tamarin music seemed to stress them out, causing the tamarins to move more and show more anxious behaviors (like bristling their fur and peeing) after the music stopped.

The tamarins also showed lesser reactions to the human music. They showed less anxious behavior after the happy human music played and moved less after the aggressive human music played. So, human voice-based music also affected the tamarins to some degree, but not as strongly. This may be because there are some aspects of how we communicate emotions with our voice that are the same in tamarins.

Can you imagine what we could do with this idea of species-specific music? Well, David and Chuck did! They have since developed music for cats using similar techniques.

We often think of vocal signals conveying messages in particular sounds, like words and sentences. But calls seem to do much more than that, making the emotions and behaviors of those listening resemble the emotions of those calling.


Want to know more? Check these out:

Snowdon, C., & Teie, D. (2009). Affective responses in tamarins elicited by species-specific music Biology Letters, 6 (1), 30-32 DOI: 10.1098/rsbl.2009.0593

Snowdon, C., Teie, D. and Savage, M. (2015). Cats prefer species-appropriate music. Applied Animal Behaviour Science, 166, 106-111.

Tuesday, October 2, 2018

Friends Without Benefits: A Guest Post

A reposting of an original article by Joseph McDonald

Do you want to avoid the friend zone?
Photo by freedigitalphotos.net.
Guys DREAD the friend zone. That heart-aching moment when the girl you’ve been fawning over for years says you’re the best listener, the sister she never had, or so much better than a diary! You’ve been so nice to her and her friends, listening to all their drama. But that’s just the problem... you’re too nice to too many people.

Research performed by Aaron Lukaszewski and Jim Roney at the University of California – Santa Barbara (UCSB) tested whether preferences for personality traits were dependent on who the target was. In Experiment 1, they asked UCSB undergrads, on a scale from 1 to 7, the degree to which their ideal partner would display certain traits towards them and towards others. These traits included synonyms for kindness (e.g. affectionate, considerate, generous, etc.), trustworthiness (committed, dependable, devoted, etc.), and dominance (aggressive, brave, bold, etc.). Experiment 2 replicated the procedures of Experiment 1. The only difference was that the term “others” was divided into subsets including unspecified, family/friends, opposite sex non-family/friend, and same-sex non-family/friend.

Let’s go over the do’s and don’ts so that future “nice guys” aren’t friend zoned. According to the findings, as graphed below:

Figure from Aaron and Jim's 2010 Evolution and Human Behavior paper.
1. Women generally prefer men who are kind and trustworthy. So, to get that girl, don’t be mean; that’s not the point. This isn’t 3rd grade so don’t pull her hair and expect her to know that you LIKE-like her.

2. Women prefer men who are kinder and more trustworthy towards them than anyone else. So it’s not so much whether you are nice enough, its whether she knows you are nicer to her than anyone else.

3. Women prefer men who display similar amounts of dominance as they do kindness. Dominance isn’t a bad thing, as long as you can distinguish her friends from her foes; especially her male friends.

4. To make things more complicated, women also prefer men who are directly dominant toward other men but don’t display dominance toward them or their family/friends, whether male or female. Some guys may want to befriend these other men, but be weary. Women preferred dominance over kindness in this situation, so kindness may not be enough.

These preferences may have developed to avoid mating with someone willing to expend physical and material resources for extramarital relationships, and invest greater in her and the children. Moderate kindness and trustworthiness toward others will maintain social relationships and prevent detrimental relationships, which may be why women generally prefer kind and trustworthy guys. But in all fairness, women can be in the friend zone too; just look at Deenah and Vinny (excuse the shameful Jersey Shore reference).

There are some things that guys look for in a mate, so ladies, here is a little advice:

1. Guys generally want a mate who is kind and trustworthy, too. We’re not that different; so don’t act a little crazy because you think he likes it. He doesn’t.

2. Guys also prefer women who display dominance toward other women (non- family/friend). Don’t be afraid to put that random girl with the prying eyes in her place.

Contrary to the hypotheses predicting female mate preferences, male mate preferences may have developed as a way to take advantage of strong female-based social hierarchies. No matter what the reasoning, however, if you can
1) be kinder and more trustworthy towards that special someone than anyone else and
2) display dominance over other same-sex people, then feel free to say good-bye to the friend zone!


For further details, check out the original experiment:

Lukaszewski, A., & Roney, J. (2010). Kind toward whom? Mate preferences for personality traits are target specific Evolution and Human Behavior, 31 (1), 29-38 DOI: 10.1016/j.evolhumbehav.2009.06.008

Tuesday, May 1, 2018

Mr. Nanny Makes Mr. Right

A reposting of an original article from November 28, 2012.

Quick! Introduce yourself to this guy before
his baby-high wears off! Photo by David
Castillo Dominici at FreeDigitalPhotos.net
What happens if you take a wrestler or action star and force him to babysit obnoxious but lovable kids? Well, if you’ve seen movies like The Pacifier with Vin Diesel, The Tooth Fairy with Dwayne ‘The Rock’ Johnson, Kindergarten Cop with Arnold Schwarzenegger, or The Spy Next Door with Jackie Chan, you know that he will fall madly in love both with his young charges and with the closest available woman. Hollywood is so sure of this phenomenon that they have based a whole genre of family movies on it. Now, scientists are finding that Hollywood may be on to something.

Prairie voles are one of the only 3-5% of mammals that are monogamous and in which both parents help take care of young. In females, maternal care is regulated in part by the hormones associated with pregnancy, birth and lactation. The fact that males don’t do those things and they still provide paternal care is curious. The fact that male prairie voles will often provide care to offspring that aren’t even their own is even more curious.

Will Kenkel, Jim Paredes, Jason Yee, Hossein Pournajafi-Nazarloo, Karen Bales, and Sue Carter at the University of Illinois at Chicago recently explored what happens to male prairie voles when they are exposed to unfamiliar vole pups. Male voles without any experience with females or pups were placed in a new clean cage. Then the researchers put either a pup (that was not related to the male), a dowel rod (an unfamiliar object), or nothing into the cage with them for 10 minutes. Afterwards, they measured oxytocin (a hormone associated with bonding between mothers and their offspring) and corticosterone (a stress hormone) in the males’ blood at different time points. In another study, they also looked at the activity of brain neurons associated with the production of these hormones.


A male prairie vole is startled to find a baby in his cage...
But then he takes care of it. Video by Will Kenkel.

Both adult and juvenile males exposed to a pup for 10 minutes had higher oxytocin and lower corticosterone compared to the males not exposed to a pup. But this effect was short-lived, as male hormone levels quickly evened out again. Most of these males that were exposed to a pup showed alloparental care (care of a baby that is not their own), like approaching the pup, cuddling with it and grooming it. Males with higher oxytocin and lower corticosterone levels were more attentive towards the pups. Additionally, alloparental males exposed to pups had more activity of oxytocin-producing neurons and less activity of neurons associated with corticosterone-production in a specific brain region called the paraventricular nucleus (or PVN for short).

Oxytocin is strongly associated with pair bonding in prairie voles, particularly in females, and corticosterone affects pair bonding too (generally increasing pair bonding in males and preventing it in females). If exposure to a pup affects these hormones, maybe it affects how the male would interact with adult females. To test this, the researchers put male voles in a new clean cage and put a pup, a dowel rod, or nothing into the cage with them for 20 minutes. Then they put the males with an unfamiliar adult female for 30 minutes. After getting acquainted with the female, the males were put in a “partner preference apparatus”, which has three connected chambers: a neutral center chamber, a connected chamber with the familiar female tethered into it, and a connected chamber with an unfamiliar female tethered into it. The researchers measured how much time the males spent in each of the three chambers and with each of the two females over the next 3 hours.



A prairie vole pair snuggles. Photo from Young,
Gobrogge, Liu and Wang paper in
Frontiers in Neuroendocrinology (2011)
Males that were exposed to a dowel rod or to nothing before they were introduced to a female spent equal amounts of time with each of the two females. But males that were exposed to a pup before they were introduced to a female spent nearly 4 times as much time with that female than with the unfamiliar one. In other words, hanging out with a random pup acted like Love Potion #9 on these bachelor males and made them fall for the next female they encountered! Interestingly, this effect was true not only for the males that acted in an alloparental way towards the pups, but it was also true of males that attacked the pups (The researchers quickly rescued the pups if this occurred). Perhaps, males that were alloparental with the pups had increased oxytocin and males that were aggressive with the pups had increased corticosterone, either of which would make it more likely for them to form a preference for the female they were with.

Hmm… Got your eye on a special someone? Try volunteering him to babysit before your next date.

Want to know more? Check this out:

Kenkel, W., Paredes, J., Yee, J., Pournajafi-Nazarloo, H., Bales, K., & Carter, C. (2012). Neuroendocrine and Behavioural Responses to Exposure to an Infant in Male Prairie Voles Journal of Neuroendocrinology, 24 (6), 874-886 DOI: 10.1111/j.1365-2826.2012.02301.x

Wednesday, February 21, 2018

The Love Chemical of 2018


Hello and welcome to the Love Chemical Pageant Results Show! The voting results are in, and today we get to crown the Love Chemical of 2018… Vasopressin! Now let’s get to know Vasopressin a little bit better.

Vasopressin (also known as Antidiuretic Hormone) is a molecule that is widely involved in the balance of water and ions (such as salts) in mammals. (Other taxonomic groups have variations of it as well). But this chemical has gone to our heads, influencing behavior as well.

In the brain, vasopressin acts on a specific receptor type, called vasopressin 1a receptor (V1aR). There are lots of V1aR receptors in brain areas that regulate social and emotional behaviors. When vasopressin binds to many of these receptors, it can result in aggression, territoriality, and fight-or-flight responses. It is also involved in the formation of memories that are necessary to avoid danger. Interestingly, males and females usually have different patterns of where in the brain these V1aR receptors are.

Although we often think of love and aggression as opposites, the life-preserving roles of vasopressin have made it well-suited to become an important chemical of love. In animals, pair bonding (the formation of a strong and unique connection between mates of a socially monogamous species) is often accompanied by an increase in aggression towards non-mates. This aggression can serve to protect the mate and family, but also to reject competitive suitors towards either partner.

Photo of a prairie vole pair from Young, Gobrogge, Liu and Wang paper
in Frontiers in Neuroendocrinology (2011)

Researchers often use several closely-related vole species to study how the brain regulates pair bonding; While prairie voles and pine voles are monogamous, raise their offspring with their partners, and defend their homes and families, montane voles and meadow voles are promiscuous and females raise their young by themselves. Oddly, giving monogamous vole species vasopressin increases their preference for spending time with their mate, their parental behaviors, and their selective aggression against outsiders, but giving promiscuous vole species vasopressin does not. Vasopressin is also more likely to increase these monogamous behaviors in males more than in females. Both males and females respond differently to vasopressin depending on their reproductive status.

It turns out, the pattern of V1aR receptors in the brain is similar between the monogamous prairie and pine voles, but different from the promiscuous montane and meadow voles. Genetic factors drive this difference, and if you alter the gene for the V1aR of a promiscuous species to be more like the prairie vole’s version of the gene, the previously promiscuous species behaves in a monogamous way! The reason promiscuous vole species don’t behave in a monogamous way when given vasopressin is because they don’t naturally have the V1aR receptors in certain brain regions to respond to it that way.

We are still learning about the role of vasopressin in pair bonding behaviors. Much of what we know has focused on these vole species, and we know much less about vasopressin’s involvement in pair bonding in other species. We also don’t know as much about the role of vasopressin in females across different reproductive stages. But one thing is for sure: Love wouldn’t be the same without Vasopressin!


Want to know more? Check these out:
Carter, C.S. (2017). The Oxytocin–vasopressin Pathway in the Context of Love and Fear. Frontiers in Endocrinology, 8(356): 1-12.

Phelps, S.M., Okhovat, M. and Berrio, A. (2017). Individual Differences in Social Behavior and Cortical Vasopressin Receptor: Genetics, Epigenetics, and Evolution. Frontiers in Endocrinology, 8(537): 1-12.

Tickerhoof, M.C. and Smith, A.S. (2017). Vasopressinergic Neurocircuitry Regulating Social Attachment in a Monogamous Species. Frontiers in Endocrinology, 8(265): 1-10.

Wednesday, February 14, 2018

The Love Chemical Pageant of 2018

A modified repost of an original article from February 15, 2012.

Hello and welcome to the Love Chemical Pageant of 2018! I’m your host, Miss Behavior, and YOU are the judges.

Since the beginning of…well, social animals, many hormones and neurotransmitters have been quietly working in their own ways to fill our world with love. Lately (over the last few decades), some of them have been brought out of the background and into the limelight, credited with every crush, passionate longing, parental hug, embrace among friends, and cuddle between spouses. But who truly deserves the title of The Love Chemical?

Let’s meet our contestants!

Let’s first meet our reining title-holder, Dopamine! Dopamine is a neurotransmitter produced in the brain. Sex increases dopamine levels in both males and females and blocking its effects during sex can prevent prairie voles (a monogamous species often used to test questions on pair bonding) from forming preferences for their own partner. Dopamine also plays a role in maternal and paternal behaviors.

But dopamine is not just involved in love. It has a wide range of known functions in the brain, involved in everything from voluntary movement, mood, motivation, punishment and reward, cognition, memory, learning, aggression, pain perception and sleep. Abnormally high levels of dopamine have been linked to schizophrenia and psychosis. And dopamine is especially well-known for its role in addiction... in fact, many researchers believe that we may even be addicted to our own romantic partners.

Now let’s meet Dopamine’s partner, Opioids! When natural opioids are released in the brain, they can cause a rewarding feeling that often cause us to seek more of it. When prairie voles are given drugs that prevent opioids from acting on a particular opioid receptor type (mu-opioid receptors) in a particular brain region (the caudate-putamen), they do not form pair bonds with sexual partners. Interestingly, people that see the faces of their loved ones experience lots of activity in the caudate-putamen region of the brain, especially if they rate their relationship with that person as very romantic and passionate. The caudate-putamen region of the brain also uses dopamine, so the two chemicals appear to work together there to promote the feelings of romantic love.

Please welcome Oxytocin! Oxytocin is a peptide hormone, most of which is made in the brain. Some of this oxytocin is released into the blood and affects body organs, such as the uterus and cervix during child birth and the mammary glands during breast feeding. But some of it stays in the brain and spinal cord, acting on neurons with oxytocin receptors to affect a number of behaviors. Released during child birth and nursing, oxytocin is important for helping mammalian mothers behave like moms and in species in which both parents raise young, it helps fathers behave like dads. Also released during sex, oxytocin plays an important role in pair bonding in prairie voles (particularly in the female of the pair). In humans, people given oxytocin nasal sprays have been reported to have less fear, more financial trust in strangers, increased generosity, improved memory for faces, improved recognition of social cues, and increased empathy.

But before you fall head-over-heels for oxytocin, you should know a few more things. For one thing, oxytocin isn’t exclusively linked with feel-good emotions; It has also been associated with territoriality, aggressive defense of offspring, and forming racist associations. Also, oxytocin doesn’t work alone. It has been shown to interact with vasopressin, dopamine, adrenaline and corticosterone and all these interactions affect pair bonding.

Next up is Vasopressin! Vasopressin is closely related to oxytocin. Like oxytocin receptors, vasopressin receptors are expressed in different patterns in the brains of monogamous vole species compared to promiscuous vole species. Released during sex, vasopressin plays an important role in pair bonding in monogamous prairie voles (particularly in the male of the pair). If you block vasopressin in the brain of a paired male prairie vole, he will be more likely to prefer spending time around a new female rather than his mate. On the flip side, if you increase vasopressin activity in specific brain regions of an unpaired male prairie vole or even a promiscuous male meadow vole and introduce him to a female, he will prefer spending time with her than other females. Vasopressin may also make male prairie voles more paternal.

But vasopressin does a lot of things. In the body, its primary function is to regulate water retention. In the brain, it plays a role in memory formation and territorial aggression. And even its role in monogamy is not exclusive: Vasopressin interacts with oxytocin and testosterone when working to regulate pair bonding and parental behavior.

Look out for Cortisol! Cortisol is produced by the adrenal glands (on top of the kidneys) and is involved in stress responses in humans and primates. Both men and women have increased cortisol levels when they report that they have recently fallen in love. Many studies have also found relationships between cortisol and maternal behavior in primates, but sometimes they show that cortisol increases maternal behavior and sometimes it prevents it. In rodents, where corticosterone is similar to cortisol, the story is also not very clear. Corticosterone appears to be necessary for male prairie voles to form pair bonds and it plays a role in maintaining pair bonds and promoting paternal behavior. But in female prairie voles, the opposite seems to be true! Corticosterone in females appears to prevent preference for spending time with their partner and pair bond formation.

Put your hands together for Testosterone! Testosterone is a steroid hormone and is primarily secreted from the gonads (testes in males and ovaries in females). Frequently referred to as “the male hormone”, both males and females have it and use it, although maybe a little differently. Testosterone is associated with sex drive in both men and women. But men who have recently fallen in love have lower testosterone levels than do single males, whereas women who have recently fallen in love have higher testosterone than single gals.

This is Estrogen! Estrogen is another steroid hormone, frequently referred to as “the female hormone”, although again, both males and females have it. Estrogen also seems to play a role in sex drive in both men and women. The combination of high estrogen levels and dropping progesterone levels (another steroid hormone) is critical for the development of maternal behavior in primates, sheep and rodents. But look closer and you will find that the activation of estrogen receptors in particular brain regions is associated with less sexual receptivity, parental behavior, and the preference for spending time with the mate.

So let’s have a round of applause for this year’s contenders in The Love Chemical Pageant! Now it is your turn to voice your opinion in the comments section below. Vote for the neurochemical you believe deserves the title The Love Chemical. Or suggest an alternative pageant result!


Want to know more? Check these out:

Burkett, J.P. and Young, L.J. (2012). The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction. Psychopharmacology, 224:1-26.

Fisher, H.E. (1998). Lust, attraction, and attachment in mammalian reproduction. Human Nature, 9(1) 23-52.

Marazziti, D. and Canale, D. (2004). Hormonal changes when falling in love. Psychoneuroendocrinology, 29, 931-936.

Van Anders, S.M. and Watson, N.V. (2006). Social neuroendocrinology: Effects of social contexts and behaviors on sex steroids in humans. Human Nature, 17(2), 212-237.

Young, K.A., Gobrogge, K.L., Liu, Y. and Wang, Z. (2011). The neurobiology of pair bonding: Insights from a socially monogamous rodent. Frontiers in Neuroendocrinology, 32(2011), 53-69.

Monday, August 7, 2017

Drinking Beer Makes You More Attractive… To Mosquitoes

Summer is a time of backyard bar-b-ques, camping, baseball games, beer, and mosquitoes. Ugh, mosquitoes! Have you ever noticed that when a bunch of us are hanging out together outside, some of us get eaten alive by those pesky buggers while others are hardly touched at all? It turns out, differences in how much alcohol we have imbibed may be a factor.

An Anopheles gambiae mosquito ready for a meal. Photo by James D. Gathany
at the Public Health Image Library at Wikimedia Commons.

“No! Say it ain’t so!”

I hate to be the bearer of bad news, so I’ll let the scientific evidence speak for itself.

A research team from the French Research Institute for Development, including Thierry Lefèvre, Louis-Clément Gouagna, Eric Elguero, Didier Fontenille, François Renaud, Carlo Costantini, and Frédéric Thomas, and Kounbobr Roch Dabiré, from the Institute for Research in Health Sciences in Burkina Faso set out to test whether people were more attractive to female mosquitoes after drinking a beer compared to beforehand. They only tested females because only female mosquitoes bite, requiring extra protein for their eggs.

The researchers put groups of 50 hungry female mosquitoes into the end of a special Y-shaped maze that let them fly in the direction of one of two odors. At the end of one arm of the Y-maze was a fan, simply blowing outdoor air through a tent and into the apparatus. At the other end of the Y-maze was a fan blowing air through a tent past a shirtless man and into the apparatus. This shirtless man had either not had anything to drink recently, or had recently drunk either a liter of beer or a liter of water. Between the starting chamber and both ends of the arms of the Y-maze were traps that would capture mosquitoes that had chosen to head that direction (lucky for the shirtless men). The number of mosquitoes caught in both traps combined (compared to the total of 50 that was initially released) was called mosquito activation, and reflected how many mosquitoes were motivated to take off and fly upwind. The proportion of mosquitoes caught in the volunteer-bated trap compared to those caught in both traps combined was called mosquito orientation, and reflected the attractiveness of the volunteer’s odor compared to the control odor.

Image A shows the two tents: one in which the man-bait sat (having consumed beer or water), and the other with no one in it. Air from each tent blew threw a tube (seen in picture B) and then into the building, past the traps and into the downwind box, where the mosquito starting-line was located (seen in picture C). Photos from Lefèvre et al., 2010.

The mosquitoes significantly increased both activation and orientation in response to the beer-drinking volunteers, but not in response to the water-drinking volunteers. That is to say, that the smell of someone that has had a beer motivates more mosquitoes to actively pursue them, and makes them more of a focused target of the mosquitoes. The researchers believe there is an interaction between how our bodies naturally smell and how our bodies break down beer that increases the attractiveness of our odors to mosquitoes. People that were more attractive to mosquitoes before they drank were also more attractive to mosquitoes after they drank. But interestingly, people that were warmer or gave off more CO2 were not more attractive to mosquitoes.

You should know that this research is much more important than just being a drag on your summer bar-b-que. The particular mosquito species that these researchers studied was Anopheles gambiae, the primary vector for malaria in Africa. They did this study in Burkina Faso, a country in West Africa with a high rate of malaria, using a local beer called dolo. Dolo, a fermented sorghum beer with low (3%) alcohol content, is the most common alcoholic beverage in Burkina Faso. So if you are in a place with a high rate of malaria, knowing that you should take extra precautions against mosquitoes when you drink could be a life-saver.

Want to know more? Check this out:

Lefèvre, T., Gouagna, L.C., Dabiré, K.R., Elguero, E., Fontenille, D., Renaud, F., Costantini, C. and Thomas, F. (2010). Beer consumption increases human attractiveness to malaria mosquitoes. PloS one, 5(3), e9546.

Tuesday, April 4, 2017

Researchers Finally Ask: Does Your Cat Even Like To Be Around You?

This cat has had enough and is running away
from home. Photo by Danielle Menuey.
While dogs happily and obliviously boast the reputation of being “man’s best friend”, cats have a reputation of being antisocial, independent, and downright grumpy. But do cats really deserve that? Scientists finally decided to find out.

Kristyn Vitale Shreve and Monique Udell from Oregon State University and Lindsay Mehrkam from Monmouth University asked 25 pet cats and 25 shelter cats their preferences.

How do you ask a cat what it prefers, you ask? You run a preference test, of course! A preference test is an experiment in which you place two or more things at equal distances from a subject and then test which of those things the subject spends the most time with.

Researchers suggest that these are some happy cats. Photo by Courtney Magnuson.

The researchers wanted to know if cats preferred: (1) food, (2) toys, (3) social interactions with humans, or (4) interesting odors. The trouble with that, however, is that there are many different foods, toys, interactions, and odors to choose from. So first, the researchers tested each cats' preferences within each category.

Will work for food. Photo by Charity Juang.
For food, the researchers put a soft chicken-flavored treat, actual chicken, and tuna into and around three puzzle boxes (so the cats would have easy access to taste some of each food, but couldn’t quickly gobble it up) and measured where the cats spent their time over a 3-minute period. Most of the cats liked the tuna most, next followed by the chicken, and they liked the soft treat the least.

For toys, the researchers made a movement toy by attaching a Dancer 101 Cat Dancer Interactive Cat Toy to a board and placing a GoCat Da Bird Feather Toy on the end with clear fishing line that was moved by an experimenter who was hidden outside the room. They then offered the movement toy, a still GoCat Da Bird Feather Toy on a board and a fuzzy shaker-mouse and they measured which toys the cats interacted with over a 3-minute period. Most of the cats liked the movement toy most, and they didn’t have much of a preference between the other two toys.

To test for cat preferences for types of human interactions, the cat’s owner (if it was a pet cat) or a researcher (if it was a shelter cat) spent one minute talking to the cat, another minute petting the cat (or holding their hand out to offer petting), and another minute playing with the cat with the feather toy (or holding out the toy). Researchers measured what proportion of each minute the cat spent interacting with the human. The cats interacted most with the humans during the play condition, next followed by petting, and least of all talking.

To see what odors cats preferred, the researchers put out cloths embedded with the scent of a gerbil (a potential prey), another cat, or catnip. The cats overwhelmingly preferred the catnip.

The preference test. Image from Vitale Shreve et al. 2017.

Once the researchers figured out what each cat preferred in each category, they set up a four-way grid with their favorite food, toy, social interaction, and odor and let them spend the next three minutes any way they liked.

Although there was a lot of variation among cats, 50% of the cats most preferred the social interaction with the human... even over food! Interestingly, the pet cats (who interacted with their owners) were no different in this regard than the shelter cats (who interacted with a researcher). But 37% of the cats most preferred food (maybe you have one of these cats). 11% preferred toys over all else. Only 1 cat (a pet named Hallie) preferred odor… the catnip fiend!

So although cats all have their own personalities, most of them really do like people. And they especially like to play with people. And, it turns out, they even do better at this than dogs (most of whom prefer food over people, when it really comes down to it). So go play with your kitty and give her some tuna… she’ll love you for it.

And, yes. This means that even cats can be trained with human interaction and food:


...But maybe not this one:

Some cats need more work than others. Photo by Jen Bray.


Want to know more? Check this out:

Vitale Shreve, K., Mehrkam, L., & Udell, M. (2017). Social interaction, food, scent or toys? A formal assessment of domestic pet and shelter cat ( Felis silvestris catus ) preferences Behavioural Processes DOI: 10.1016/j.beproc.2017.03.016

Monday, June 20, 2016

Mosquitoes Don’t Like Parasites Either (A Guest Post)

By Maranda Cardiel

A photograph of Culex pipiens, the species of mosquito that the researchers used
in their experiment. Source: David Barillet-Portal at Wikimedia Commons.

Everybody hates mosquitoes. They are annoying, persistent, and make us itch like crazy. Sometimes there are so many of them that we are afraid to go outside unless we want to risk getting covered in spots and scratching ourselves all over for the next week. And if that wasn’t enough, they can also carry dangerous diseases with the potential to kill us. However, just like us, mosquitoes don’t like to be bugged by parasites that can make them sick either. Research shows that they may even avoid interacting with hosts that might pass along parasites to them.

A group of researchers - Fabrice Lalubin, Pierre Bize, Juan van Rooyen, and Philippe Christe from the University of Lausanne in Switzerland and Olivier Glaizot from the Lausanne Museum of Zoology – wanted to see if mosquitoes would show a preference for feasting upon birds that were infected with malaria (a blood parasite) or uninfected birds. Mosquitoes find animals to snack on by sensing odors and carbon dioxide in the air that animals give off, along with using their senses of vision, hearing, and touch. In order to figure out if mosquitoes use these senses to specifically choose their unlucky victims, the researchers did an experiment with mosquitoes, malaria, and great tits (a type of bird with a funny name).

For their experiment, the researchers collected mosquito eggs that they hatched and raised in a lab. Only female mosquitoes suck blood, so only female mosquitoes were used in the experiment. The mosquitoes had never been exposed to birds before and were starved of sugar for one day to make sure that they would be hungry. The researchers also caught wild adult great tits, and they took small blood samples from each bird to test for malaria before and after the experiment.

Next it was time to see if the mosquitoes would find some birds to be more appealing than others. A special Y-shaped wind tunnel allowed the mosquitoes to choose between the odors of two birds: one that was infected with the malaria parasite and one that was not. But don’t worry, the mosquitoes could not directly contact the birds. The researchers set up the lab so that it was completely dark to mimic the natural settings of when mosquitoes feed in the wild. This also meant that the mosquitoes were blind and could only choose a bird based on the chemicals in the air. Randomly-chosen pairs of birds and new mosquitoes were used for each round of the test.

A cartoon depicting the experiment setup. A hungry female mosquito hones in on the odors
of a healthy great tit and a great tit infected with malaria parasites. Source: Maranda Cardiel

The results of the study showed that the mosquitoes had a strong preference for birds that were not infected with the malaria parasite. This was true even when the researchers took into account the body sizes and sexes of the birds. Previous studies with different kinds of birds, mosquitoes, and malaria or malaria-like parasites have found similar results. The researchers think that this may be because the malaria parasite somehow causes changes in the chemical processes in the birds’ bodies that the mosquitoes can pick up on.

Infection with malaria might change what the birds smell like to the mosquitoes or how much carbon dioxide the birds give off. There is also evidence that birds who are more susceptible to malaria infections have a different odor than birds with stronger immune systems. But why should mosquitoes be picky and choose to bite healthy birds? They certainly don’t seem like they care whose blood they suck when they are swarming around us!

Previous research has shown that mosquitoes infected with malaria parasites have problems developing their eggs and can have trouble sucking up blood from their victims. Female mosquitoes use blood to nourish their eggs, so if they don’t drink as much blood, they will not be able to lay as many eggs. This means that female mosquitoes carrying malaria parasites are less likely to produce as many healthy offspring. Thus, it makes sense for female mosquitoes to want to avoid feeding on birds that are infected with malaria.

This probably has not changed your thoughts about mosquitoes. They are still a nuisance that we all squish - or at least attempt to squish - upon sight. It might be ironic, but mosquitoes don’t like to have parasites bothering them either. Even though we hate them, maybe now you can find some solace in mosquitoes finding you attractive. It might be a sign that you are actually healthier than your peers.


Source:

Lalubin, F., Bize, P., van Rooyen, J., Christe, P., & Glaizot, O. (2012). Potential evidence of parasite avoidance in an avian malarial vector Animal Behaviour, 84 (3), 539-545 DOI: 10.1016/j.anbehav.2012.06.004

Monday, February 15, 2016

Infidelity in Nature: a Lion’s Story (A Guest Post)

By Devin Zingsheim

When people think of mating, especially in the case of humans, they often think of one man marrying and mating with a single female. While this provides a nice image of mating, it is not always true. In the case of humans, both males and females may stray from this image and mate with other individuals. For example, a female in a relationship may become attracted to and mate with someone she finds exciting, like a rebel. These exciting individuals are the outsiders because they exist outside the female’s main relationship. But this is only in the human species - Could this observation hold true in another species, like lions?

Photo taken by Devin Zingsheim
at the Wisconsin Wild Cat Sanctuary.

As most people know, lions live in groups of animals, called prides. Prides often consist of between one and three dominant males and several females. Females of one pride typically do not co-mingle with members of other prides. This fact means that typically in a pride, the dominant males do all the mating and father all of the cubs born into their pride. However, as with humans, could there also be exceptions in lions?

Martha Lyke of Northeastern Illinois University, Jean Dubach of the Wildlife Genetics Lab at Loyola University Medical Center, and Michael Briggs of the African Predator Conservation Research Organization investigated breeding behavior in lions. These researchers noticed that field observations recorded females of prides residing in the Etosha National Park in Namibia interacting with outsider males. Outsider males can be from other prides or they can be rebels without a pride. This is unique because past studies focusing on lions of the Serengeti revealed that females seldom interact with other prides. These observations led the researchers to three main hypotheses. First, they thought that this mingling with outside males could lead to mating and eventually births. They also thought that females might mate with more than one male, potentially leading to cub siblings with different fathers. Lastly they thought prides with fewer males would be at greater risk for these illegitimate births because the male is not around enough to drive the outsider males away.

Image of Africa with the location of Namibia highlighted.
 “Location Namibia AU Africa” by Alvaro1984 18 –
Own works. Licensed under Public Domain via Commons.

To find the answers to the three questions the researchers had, they set up a study in Etosha National Park. This national park has a program in which every lion that resides in the park is branded for monitoring. At the beginning of the study, the researchers took observations of every lion spotted and its interactions with other lions. Lions that were observed spending a lot of time with one another in a territory were considered a pride. This then allowed the researchers to identify when and if females interacted with outsider males. After identifying prides, the researchers gathered blood and tissue samples for analysis. DNA analysis indicated the parents of any cubs within the prides.

Observations led to the identification of 11 prides containing 102 lions. Prides on average contained 10 individuals and had a roughly 2:1 adult female to male sex ratio. Surprisingly, only 55% of the 164 DNA samples collected came from the 11 identified prides and a whopping 41% of cubs sampled were illegitimate and had outsider males as their fathers. Interestingly, the researchers found that these cubs fathered by non-pride males came from only five of the prides, four of which had an unusually high female to male sex ratio. Additionally, the researchers also found four cases where litters of cubs had different fathers!

These results provide a lot of new and interesting insights into the sexual behavior of lions. Evidence was found to support all three of the researchers’ hypothesis. They found that females do give birth to young whose fathers are not part of the pride and that mixed paternity does occur in this population. They also found that prides with fewer males did have cubs born to males from outside the pride. This might be due to the fact that there are fewer pride males around to protect and drive away outside males. Additionally, with fewer males around, females may want to seek out other males to ensure they get to reproduce. This study has found evidence that there may be a lot more to sexual behavior in lions than meets the eyes. It has shown that, like human females, lionesses may be tempted to run off and mate with that exciting rebel outsider male.


Works cited

Lyke, M., Dubach, J., & Briggs, M. (2013). A molecular analysis of African lion (Panthera leo) mating structure and extra-group paternity in Etosha National Park Molecular Ecology, 22 (10), 2787-2796 DOI: 10.1111/mec.12279

Monday, March 30, 2015

Gut Feelings

This boy may be influencing who he will marry when
he grows up. Photo by Orrling at Wikimedia Commons.
Animals (including humans) are swarming with microorganisms both on and in our bodies. Humans harbor so many different microorganisms that we have over 150 times more microbial genes than mammalian genes, and it is reasonable to suspect that this scenario is similar for most animals. But before you run to soak in a tub of hand sanitizer, you should realize that many of these microorganisms are actually beneficial to the health of both your body and your mind. Although this field is still very much in its infancy, we have found that the microbes that live in digestive tracts in particular significantly influence their host animal’s behaviors. This connection between our digestive communities and our behaviors has been termed the microbiota–gut–brain axis.

Much of the early research on the microbiota-gut-brain axis was done using specialized mice that have never been exposed to any bacteria. You may think this sounds like a healthy lifestyle, but these so-called germ-free mice have all kinds of health and behavioral problems. They often have digestive difficulties and high levels of anxiety, symptoms common of people with irritable bowel syndrome (IBS). They also typically have deficits in social behavior and increased repetitive behaviors. Similar to autism-spectrum disorders and obsessive compulsive disorder (OCD), these behavioral problems are more likely to occur in males than in females. When faced with a challenge, many struggle with solving the problem and show a higher tendency to give up, symptoms common in patients with depression. Interestingly, simply feeding germ-free mice some species of Bifidobacteria and Lactobacilli bacteria (similar to bacterial strains found in different brands of yogurt) can reduce symptoms of anxiety, depression, cognitive difficulties, autism, and OCD. This has led to a boom in biomedical research on the benefits of probiotics (that contain microbes that live in our guts) and prebiotics (that contain things that the microbes in our guts eat).

Yogurt bacteria. Photo by Josef Reischig at Wikimedia Commons.
These gut microbes don’t just help animals maintain their physical and mental health, they are also involved in complex social behaviors. For example, fruit flies prefer mates that grew up eating the same diet that they grew up eating. However, if they are treated with antibiotics, which kill the gut bacteria, they lose their mate choice preferences. If they are then treated again with microbes from their initial diet (with one Lactobacillus bacteria in particular), they gain their mate choice preferences back. This all makes me wonder, how important is yogurt to choosing the people we date and marry?

How do microbes in our guts affect our brains anyway? Although the answer to this is still mostly unknown, we know that the gut has the potential to influence the brain through multiple means, including hormone production, immune function, and even directly through specific nerves. The specific mechanisms are still being very actively researched, but it is clear that microscopic critters living in our guts likely influence our brains and behaviors in many different physiological ways.

Microbiota-gut-brain axis research is revolutionizing the way we think about health, medical treatments, behavior and even existential questions like who am I? But one thing is for sure: I’m gonna go have another yogurt.


Want to know more? Check these out:

Cryan, J., & Dinan, T. (2015). More than a Gut Feeling: the Microbiota Regulates Neurodevelopment and Behavior Neuropsychopharmacology, 40 (1), 241-242 DOI: 10.1038/npp.2014.224

Ezenwa, V., Gerardo, N., Inouye, D., Medina, M., & Xavier, J. (2012). Animal Behavior and the Microbiome Science, 338 (6104), 198-199 DOI: 10.1126/science.1227412