Showing posts with label invertebrates. Show all posts
Showing posts with label invertebrates. Show all posts

Sunday, October 13, 2019

4 Real-Life Monsters

A repost of an original article published October 26, 2015.

During the Halloween season, we find ourselves surrounded by monsters in movies, stores and decorations. We laugh at the ridiculousness of it all, oblivious to the fact that there are true monsters on our planet today! Mind you, these are not monsters in that they are evil, but they do have many of the same abilities and inclinations of our own mythical werewolves, vampires, zombies and shape-shifters.


Werewolf birds:


A Barau's petrel. Photo by SEOR
available at Wikimedia Commons.
Barau’s petrel is a migrating sea bird that is most active during nights with a full moon. Researchers tied bio-loggers on the birds’ feet to track their activity levels and found that under the full moon, the birds spent nearly 80% of these moonlit nights in flight! It is thought that since these birds migrate longitudinally (parallel with the equator), they can’t use changes in day length as a cue to synchronize their breeding, so they use the phases of the moon instead.


Vampire bats:


Three different bat species feed solely on blood: the common vampire bat, the hairy-legged vampire bat and the white-winged vampire bat. Feeding on blood is not uncommon – The actual term for it is hematophagy, and it is common in insects (think of those pesky mosquitos) and leeches. Although we don’t commonly think of it this way, blood is a body tissue and, like meat, it is rich in protein and calories. The reason it has not become a more popular food source among mammals is probably because it is so watered down (literally) compared to meat, that it can’t provide enough nutrition to sustain a large warm-bodied mammal. This is where our little vampire bat friends come in… small, stealthy, and with specialized saliva that prevents their victims’ blood from clotting, these guys are able to take advantage of this abundant resource, drinking up to half of their body weight in blood every night.



Zombees:


Scientists have recently discovered some strange honey bees: They mindlessly leave their hives in the middle of the night and fly in circles, often towards lights. It turns out that these honey bees are being parasitized by a species of phorid fly called the zombie fly. Female phorid flies lay their eggs inside the abdomens of honey bees, where the eggs hatch into larvae. The larvae feed on the insides of their bee hosts until they are mature enough to leave through the poor bee’s neck (the honey bee is generally dead by this time). Once out, the zombie flies develop into adults so they can breed and start the cycle anew with a new bee host. This phenomenon is still in the early stages of discovery, so if you would like to get involved in this project by watching honey bees in your area, check out ZomBee Watch, a citizen science project to track this zombie infestation.



Shape shifters:


The mimic octopus is a small harmless octopus that lives on the exposed shallow sandy bottoms of river mouths. To avoid its many predators it has developed an amazing strategy: it pretends to be something else, morphing its body into new shapes, like the shape of a deadly lion-fish, a poisonous flatfish, a venomous banded sea-snake, or any number of other animals that live in the area. Not only does the mimic octopus change its shape, it also changes its behavior to match its “costume” to convincingly fool predators. Most cephalopods, which include octopuses, are well-known for their ability to change the color, pattern and texture of their skin to blend in with rocks, coral and plants. Furthermore, octopuses do not have rigid skeletal elements, which allows their bodies great flexibility in the forms they imitate. But this ability to change both physical appearance and behavior to switch back and forth among imitations of multiple species is unique to this astounding shape shifter.


Saturday, September 21, 2019

A Master of Disguise (A Guest Post)

By Jake Klemm

Cephalopods are among the most intelligent of marine life. Their highly advanced nervous systems allow them to exhibit a complex array of behaviors (for example, camouflage). Within this array is a rather unique behavior observed in the cuttlefish Sepia pharaonis. These elegant beings are now known to… intensely flap their arms? These animals are truly graceful.

A lovely photo of S. pharaonis. Image by Silke Baron at Wikimedia Commons.

Researchers Kohei Okamoto, Haruhiko Yasumuro, Akira Mori, and Yuzuru Ikeda of the University of the Ryukyus in Okinawa, Japan observed this behavior on two separate occasions while studying S. pharaonis. The scientists had initially collected these cuttlefish with the intention of conducting other experiments but noticed this behavior while the cuttlefish were introduced to a large water-filled tank and while hunting prey. After noticing this wild arm-flapping behavior, the researchers turned their attention towards why the behavior was being displayed.

The researchers first observed this behavior in December of 2011. The cuttlefish were placed in a large, circular tank for conducting other experiments when a couple of them were observed to flap their arms. After the initial experiments were finished, a few of the cuttlefish were placed in the same sized tank and observations were recorded with a video camera over a period of five days. This behavior was revisited in 2013 for further observation. The cuttlefish they used were reared from eggs found in the same coastal waters of Okinawajima Island as the cuttlefish that were part of the 2011 experiments. Again, cuttlefish were placed in a large tank to observe the behavior with a video camera. The researchers counted each occurrence of the behavior and recorded the duration of each behavior. After observations were complete, the researchers performed experiments to observe the hunting ability of S. pharaonis. This arm-flapping behavior was observed unexpectedly while the cuttlefish hunted prey. The means of recording the behavior were the same as described above. In addition, the researchers recorded the number of prey caught between cuttlefish that did and did not display the behavior.

The researchers noticed variation in the frequency and duration of this behavior in the presence and absence of prey. When placed in a tank without prey, only a small number of cuttlefishes displayed this behavior. Of the cuttlefish that did flap their arms, the behavior lasted (on average) no longer than 37 seconds. However, the cuttlefish that were placed in a tank with prey, the behavior was displayed for at significantly longer period of time. In addition to that, more cuttlefish overall were seen flapping their arms in this second experiment. The cuttlefish that flapped their arms caught a significantly larger number of fish than the ones that did not flap their arms, despite being observed in the same tank and having access to the same number of prey animals. This observation led the researchers to believe that something about this unique behavior is helping the cuttlefish capture more prey.

A front view of a cuttlefish. Image by Stickpen at Wikimedia Commons.

The resemblance is uncanny! Image by Maximilian Paradiz at Wikimedia Commons.

What could this all mean? The researchers think that the cuttlefish may be mimicking another organism, specifically the hermit crab, to confuse the prey fish into thinking that they are another harmless animal. It is thought that the head of the cuttlefish resembles the shell of the hermit crab while the arms resemble the eyes and legs of the hermit crab. Posing as a harmless crab would allow the cuttlefish to get behind enemy lines and ultimately catch more prey. Further research will have to be done in lab as well as the field to see if this behavior is really that of mimicry. Other cephalopods are notorious for mimicking other animals, so it is not out of the realm of possibility. Studying this behavior would allow scientists to difurtveher into the evolutionary history of S. pharaonis. Until then, the graceful limb-flailing will remain an ever-tantalizing mystery.


References

Okamoto, K., Yasumuro, H., Mori, A., & Ikeda, Y., (2017). Unique arm-flapping behavior of the pharaoh cuttlefish, Sepia pharaonic: putative mimicry of a hermit crab. Journal of Ethology, 35(3), 307-311. DOI: 10.1007/s10164-017-0519-7

Sunday, September 8, 2019

Tiny Ninjas, Big Bites (A Guest Post)

By Alexis Brauner

Venom isn’t just a weapon for snakes and spiders.

A smaller, more dangerous insect is in existence and falls into the realm of venomous creatures: the assassin bug. This little critter is part of a scientific family called Reduviidae, a group where all the members share the same characteristic of being an ambush predatory bug. They prey on invertebrates (animals that don’t have a spine), such as crickets and mealworms, by injecting venom into them.

An assasin bug. Source: Fir0002/Flagstaffotos at Wikimedia Commons.

Assassin bugs are believed to have two versions of venom – one for feeding and one for defense. Both types of venom are made up of more than 100 proteins, but what is unique about it is its ability to paralyze and liquify the inside of the prey. That’s right… liquify. The tissues of the prey turn into a jello-like substance that the assassin bug can then suck through a long tube on its mouth called the proboscis.

How is the venom able to do that?

First, let’s peek at the mechanisms that work to carry the venom through the body of the assassin bug and into its meal.

The venom apparatus of an assassin bug is made up of three main parts: secretory glands, a muscle-driven pump, and a venom channel. The three secretory glands (the anterior main gland, posterior main gland, and accessory gland) are in the thorax and abdomen of the assassin bug. These separate glands release a specific form of assassin bug venom depending on what situation the bug is facing. For example, the anterior main gland releases a form of venom that does not paralyze prey but is thought to be used as a defense mechanism, while the posterior main gland releases the deadly form of venom.

The venom apparatus of an assassin bug. Source: Walker, et. al, 2018, modified by Alexis Brauner

Once released, the venom then makes its way to a muscle-driven pump within the head of the bug. The pump fills with the available venom when the muscle contracts and is released once the muscle relaxes. Think of the venom pump as a clothes pin: when you push on the prongs, the pin opens, and you can put things in it to hold; once you let go of the prongs, the mouth of the pin closes, but now the prong end is open. In this example, your fingers are the muscle and the clothes pin is the pump with one end open at a time. The muscle relaxation releases the venom into the venom channel in the interlocking maxillary stylets (also known as the fangs) of the assassin bug. And then…

BOOM!

Venom is in the food or the foe.

And if it’s in the food, then the tissues of the prey turn into liquid. This liquification phenomenon is caused by enzymes in assassin bug venom called proteases. All enzymes catalyze, or speed up, chemical reactions; however, proteases are specialized enzymes that catalyze the destruction of proteins. This means that the assassin bug venom goes into the prey and the proteases are like Pac-Men with razor sharp teeth that grind up the primarily protein tissue at such a lightning fast speed that, within seconds, the prey is juice!

Scientists continue to research assassin bug venom to learn more about its components, but one thing is for sure: The extraordinary liquid weapon housed in such a small insect is why assassin bugs are tiny ninjas with big bites.


To learn more:

Walker, A., Madio, B., Jin, J., Undheim, E., Fry, B., King, G. (2017). Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol Cell Proteomics, 16 (4), 552-566. DOI: 10.1074/mcp.M116.063321.

Walker, A., Mayhew, M., Jin, J., Herzig, V., Undheim, E., Sombke, A., Fry, B., Meritt, D., King, F. (2018). The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nat Commun, 9, 755. DOI: 10.1038/s41467-018-03091-5

Tuesday, April 16, 2019

Does Social Status Change Brains?

A reposting of an original article in The Scorpion and the Frog.

Photo by The Grappling Source Inc.
at Wikimedia Commons
Being subordinated is stressful. The process of one individual lowering the social rank of another often involves physical aggression, aggressive displays, and exclusion. In addition to the obvious possible costs of being subordinated (like getting beat up), subordinated individuals often undergo physiological changes to their hormonal systems and brains. Sounds pretty scary, doesn’t it? But what if some of those changes are beneficial in some ways?

Dominance hierarchies are a fact of life across the animal kingdom. In a social group, everyone can’t be dominant (otherwise, life would always be like an episode of Celebrity Apprentice, and what could possibly be more stressful than that?). Living in a social group is more peaceful and nutritive when a clear dominance hierarchy is established.

Establishing that hierarchy often involves a relatively short aggressive phase of jostling for position, followed by a longer more stable phase once everyone knows where they fall in the social group. Established dominance hierarchies are not always stable (they can change over time or from moment to moment) and they are not always linear (for example, Ben can be dominant over Chris, who is dominant over David, who is dominant over Ben). But they do generally help reduce conflict and the risk of physical injury overall.

Nonetheless, it can be stressful to be on the subordinate end of a dominance hierarchy and these social interactions are known to cause physiological changes. Researchers Christina Sørensen and Göran Nilsson from the University of Oslo, Cliff Summers from the University of South Dakota and Øyvind Øverli from the Norwegian University of Life Sciences investigated some of these physiological differences among isolated, dominant, and subordinate rainbow trout.



A photo of a rainbow trout by Ken Hammond at the USDA.
Photo at Wikimedia Commons.
Like other salmonid fish, rainbow trout are aggressive, territorial and develop social hierarchies as juveniles. Dominant trout tend to initiate most of the aggressive acts, hog food resources, grow larger, and reproduce the most, whereas subordinate trout display less aggression, feeding, growth, and reproduction. The researchers recorded the behavior, feeding and growth rates in three groups of fish: trout housed alone, trout housed with a more subordinate trout, and trout housed with a more dominant trout. The researchers also measured cortisol (a hormone involved in stress responses), serotonin (a neurotransmitter involved in mood, the perception of food availability, and the perception of social rank, among other things) and the development of new neurons (called neurogenesis) in these same fish.

This video of two juvenile rainbow trout was taken by Dr. Erik Höglund. Here is Christina Sørensen’s description of the video: “What you see in the film is two juvenile rainbow trout who have been housed on each side of a dividing wall in a small aquarium. The dividing wall has been removed (for the first time) immediately before filming. You will see that the fish initially show interest for each other, followed by a typical display behaviour, where they circle each other. Finally one of the fish will initiate aggression by biting the other. First the aggression is bidirectional, as they fight for dominance, but after a while, one of the fish withdraws from further aggression and shows only submissive behaviour (escaping from the dominant and in the long run trying to hide... and as is described in the paper, depressed feed intake). The video has been cut to show in quick succession these four stages of development of the dominance hierarchy”.

The researchers found that as expected, the dominant trout were aggressive when a pair was first placed together, but the aggression subsided after about 3 days. Also as expected, the dominant and isolated trout were bold feeders with low cortisol levels and high growth rates, whereas the subordinate trout did not feed as well, had high cortisol levels and low growth rates. Additionally, the subordinate trout had higher serotonin activity levels and less neurogenesis than the dominant or isolated trout. These results suggest that the subordination experience causes significant changes to trout brain development (Although we can’t rule out the possibility that fish with more serotonin and less neurogenesis are predisposed to be subordinate). In either case, this sounds like bad news for subordinate brains, right? Maybe it is. Or maybe the decrease in neurogenesis just reflects the decrease in overall growth rates (smaller bodies need smaller brains). Or maybe something about the development of these subordinate brains improves the chances that these individuals will survive and reproduce in their subordination.


A crayfish raising its claws. Image by Duloup at Wikimedia.
Research on dominance in crayfish by Fadi Issa, Joanne Drummond, and Don Edwards at Georgia State University and Daniel Cattaert at the University of Bordeaux helps shed light on this third possibility. Crayfish (which are actually not fish at all, but are freshwater crustaceans that look like small lobsters) form long-lasting and stable social hierarchies. If you poke a crayfish in the side, an isolated or dominant crayfish will turn towards whatever poked it and raise its posture and claws to confront it; A subordinate crayfish will do one of two maneuvers that involves lowering the posture and backing away from whatever poked it. Furthermore, dominant and subordinate crayfish have different neuronal activity patterns in response to being poked, and part of this difference involves differences in the activity of serotonergic neurons.

It appears that the brains of dominant and subordinate individuals function differently and part of this difference involves serotonin. This may help dominant animals to continue to behave in a dominant fashion and subordinate individuals to continue to behave in a subordinate fashion, thereby preserving the peace for the whole social group.

Want to know more? Check these out:

1. Sørensen, C., Nilsson, G., Summers, C., & Øverli, �. (2012). Social stress reduces forebrain cell proliferation in rainbow trout (Oncorhynchus mykiss) Behavioural Brain Research, 227 (2), 311-318 DOI: 10.1016/j.bbr.2011.01.041

2. Issa, F., Drummond, J., Cattaert, D., & Edwards, D. (2012). Neural Circuit Reconfiguration by Social Status Journal of Neuroscience, 32 (16), 5638-5645 DOI: 10.1523/JNEUROSCI.5668-11.2012

3. Yeh, S., Fricke, R., & Edwards, D. (1996). The Effect of Social Experience on Serotonergic Modulation of the Escape Circuit of Crayfish Science, 271 (5247), 366-369 DOI: 10.1126/science.271.5247.366

4. Issa, F., & Edwards, D. (2006). Ritualized Submission and the Reduction of Aggression in an Invertebrate Current Biology, 16 (22), 2217-2221 DOI: 10.1016/j.cub.2006.08.065

Tuesday, March 26, 2019

Interrupting Insects

A reposting of an original article from The Scorpion and the Frog.

What do you think of when I say “communicate”? Most likely, you are imagining people communicating by an auditory mode (talking and listening, making expressive sounds) or by a visual mode (observing body language, reading and writing). As a species, humans inherently rely heavily on our hearing and vision to perceive the world around us and so it makes sense that we communicate with one another using these modalities. But animal species are incredibly diverse in their means of perceiving their worlds and their modes of communication. Because we have been so focused on studying animal signals that we can perceive, we have only recently begun to more actively explore animal communication in these other modes. One of these modes is soundless surface vibrations.

The photo is of an adult Tylopelta gibbera on a host plant stem
(photo (c) Rex Cocroft).
Despite the fact that we do not perceive most animal surface vibration signals around us, vibrational communication is very common, especially among insects and spiders. Rex Cocroft at the University of Missouri at Columbia and Rafa Rodríguez at the University of Wisconsin at Milwaukee point out in a review of vibrational communication that over 195,000 species of insects communicate using soundless surface vibrations. We can experience many of these substrate vibration signals by broadcasting them through a speaker as an airborne vibration (which we perceive as sound).

Vibrational signals serve a number of functions in the insect worlds. Social insects, like ants, termites, and bees, often use vibrational signals to coordinate foraging. Groups of juvenile thornbug treehoppers vibrate when a predator approaches, calling in the mother to defend them. Males of many species have been found to use vibrational signals to attract females and the females often use these signals to choose a mate.

Vibrational signals are carried through a solid substrate, so they can only travel as far as the substrate is continuous and they are affected by attributes of the substrate (like changes in density). Because of these constraints, most vibrational signals can only travel about the length of a human arm. Many insects that use vibrational communication live on host plants, and it is these host plants that transmit the vibration signals. These animals face many challenges in transmitting their signals to the intended recipient. For example, wind, rain, and environmental sounds can create competing vibrations (background noise). In addition to environmental background noise, the vibrational soundscape of a given plant stem will likely include many signaling individuals, often of many species. Not only are there difficulties in getting your signal to your intended audience, but there are also risks of eavesdropping predators and competitors.

Frédéric Legendre, Peter Marting and Rex Cocroft at the University of Missouri at Columbia, demonstrate the social complexities of vibrational communication in a new study of competitive signaling in a treehopper species, Tylopelta gibbera. Tylopelta gibbera is a small treehopper in the southern United States, Mexico and Guatemala, that only lives on plants from the Desmodium genus. Males will attract and court females with vibrational signals and interested females will respond to the male with vibrational signals of their own. However, many individuals can often be found on a single plant and if two signaling males are present, the receptive female will typically respond to both of them and only mate with one (generally the first one she encounters). What is a competing male to do?

Listen to a male Tylopelta gibbera advertisement signal here.


The researchers performed a series of experiments, in which they observed treehoppers on potted host plants in the lab. With this set-up, they could control the environmental conditions, decide the number of males and females on the plant, record vibrational signals and play them back. They found that once a male signals and detects a female response, he will actively search for her along the plant, alternating signals and steps in a “Marco Polo” mating game until he finds her. Males found the females almost twice as fast if they were the only male on the plant, indicating that the presence of a second male on the plant somehow interferes with their ability to locate the female. Also, when two males were on the plant, they produced a new signal type that was never produced by a lone male on a plant. Males that had no male competition only produced signals that had a whine sound, followed by a series of pulses (and the female would then immediately respond with a harmonic sound of her own). This male signal is called the advertisement signal. Males that had a competing male on the plant would produce an additional signal that was a short tonal note. Interestingly, these males often produced this second signal at the same time that their competitor was advertising himself. Hmmm… could this be a masking signal used to interrupt the competitor? How could you figure that out?

This figure from Legendre, Marting and Cocroft's 2012 Animal Behaviour paper shows
the whine and pulses of a male advertisement signal (top) and a histogram of when the
masking signal occurs in relation to the timing of the advertisement signal (bottom).
First, the researchers asked, “When do males produce this second signal?” The researchers put two males on a plant with one female and recorded their vibrations. They found that in this situation, males typically produced this second signal while his competitor was just beginning the pulse section of his advertisement signal. Next, the researchers played back recordings of male advertisement signals followed by female responses to a lone male on a plant. All of the males tested produced the masking signal during the pulse section of the male advertisement signal on the recording.

Don't you hate it when someone does this?

Next, the researchers asked, “How do females respond to this second signal?” On plants with one female and two males, females didn’t respond as much to advertisement signals overlapped by a second signal as they did to advertisement signals alone. The researchers then played recordings of male advertisement signals to lone females on the plants. Females responded significantly more often if the advertisement signal was not overlapped by a masking signal.

So, male treehoppers get an edge up on getting the girl by interrupting the other competing males. Sneaky buggers!

Want to know more? Check these out:


1. COCROFT, R., & RODRÍGUEZ, R. (2005). The Behavioral Ecology of Insect Vibrational Communication BioScience, 55 (4) DOI: 10.1641/0006-3568(2005)055[0323:TBEOIV]2.0.CO;2

2. Legendre, F., Marting, P., & Cocroft, R. (2012). Competitive masking of vibrational signals during mate searching in a treehopper Animal Behaviour, 83 (2), 361-368 DOI: 10.1016/j.anbehav.2011.11.003


3. A Japanese research team has harnessed this phenomenon to create a remote-control that makes annoying people stop talking. Find out more at the blog Gaines on Brains!

Wednesday, February 13, 2019

A Snail’s Dart of Love (A Guest Post)

By Jenna Miskowic

Snails that shoot darts. Who would have thought? Turns out, snails have a lot of competition for mates. Females of some snail species have evolved ways to select which males they want to be the father of their eggs. One of these strategies is a female can mate with multiple males and store their sperm. The female can then “choose” which sperm she wants to fertilize her eggs. This affects how males compete for mates. Males want to make sure they are the father to the offspring because they want their genes to be passed on. So male snails have developed ways to increase their chances of paternity.

Euhadra quaesita gliding through foliage. Image by Angus Davison
and Satoshi Chiba posted at Wikimedia Commons.

Enter the dart-bearing land snail, Euhadra quaesita. Snails of this species are simultaneous hermaphrodites that use cross-fertilization. Simultaneous hermaphrodites are animals that have both female and male reproductive tissues and systems. Cross-fertilization means that the snails require a mate. So, when two dart-bearing land snails cross paths and decide they want to mate, they will take their love-dart and pierce it into their mating partner. Because the snails are simultaneous hermaphrodites, they both perform this behavior before exchanging their sperm.

Love darts are composed of a crystalline form of calcium carbonite, which is what sea shells are made of, called aragonite. They are very sharp and pointed so that they are able to pierce the other snail. The dart is covered with a secretion from its mucous glands. When the dart pierces into the other snail, mucus is transported from the dart’s glands into the pierced snail’s blood. This mucus helps increase the amount of sperm being stored in the recipient snail and increases the likelihood of the donor snail being the father to the offspring of the recipient snail. Researchers Kazuki Kimura, Kaito Shibuya, and Satoshi Chiba from Tohoku University in Japan hypothesized that the dart’s mucus would also reduce future matings and promote laying eggs, also called oviposition.

Drawing of Euhadra quaesita’s love-dart. Cross-section on the left and lateral view on the right.
Image by Joris M. Koene and Hinrich Schulenburg posted at Wikimedia Commons.

To test these hypotheses, the researchers conducted two separate experiments. The first experiment focused on the effects of dart shooting and future matings of the recipient snail. Individually, non-virgin adult snails were presented with a non-virgin or virgin adult for their initial mating. In this species, non-virgin adults shoot their darts and virgin snails do not shoot their darts while performing the mating behavior. Thus, the subjects paired with a non-virgin adult were pierced with their partner’s love-dart, and the subjects paired with a virgin adult were not pierced with their partner’s love-dart. Then the subjects were offered to mate again with an unfamiliar non-virgin snail with a high mating motivation caused by individual rearing. They recorded how long the snail subject went, in days, before mating again with another individual of the same species. The researchers found that the amount of time between matings was longer in pierced snails than in ones not pierced.

The second experiment focused on the effect of injected artificial mucus on future matings and promotion of oviposition behavior. Researchers dissected an extract of the mucous glands out of adult snails and combined it with saline solution to create the artificial mucus. There were two groups used in this experiment: (1) adult snails injected with the artificial mucus, also known as the treatment group and (2) adult snails injected with only the saline solution, also known as the control group. They recorded the number of hatched eggs and their parentage. They found that artificial mucus-injected snail pairs mated less often than the control pairs. Additionally, they found that the amount of the snails that laid eggs was larger in the snails injected with artificial mucus. These findings support the researchers’ hypotheses that dart mucus can subdue future matings in its recipients.

So what are the benefits to stabbing your partner with a love dart? Well, if an animal has multiple partners, then it is quite advantageous for the partner to make sure that they are the parent. Mating suppression after being injected with the love dart is one way to fight off the competition. So, beware to all who search for Cupid’s arrow this Valentine’s Day. There may be more to an arrow of love than you realize.


References

Kimura, Shibuya, & Chiba. (2013). The mucus of a land snail love-dart suppresses subsequent matings in darted individuals. Animal Behaviour, 85(3), 631-635.

Tuesday, November 6, 2018

Striving for a Honeybee Democracy

A revision of an article from August 14, 2017.

Democracy is hard. And slow. And complicated. But if it is done well, it can result consistently in the best decisions and courses of action for a group. Just ask honeybees.

When a honeybee hive becomes overcrowded, the colony (which can have membership in the tens of thousands) divides in what will be one of the riskiest and potentially deadliest decisions of their lives. About a third of the worker bees will stay home to rear a new queen while the old queen and the rest of the hive will leave to establish a new hive. The newly homeless colony will coalesce on a nearby branch while they search out and decide among new home options. This process can take anywhere from hours to days, during which the colony is vulnerable and exposed. But they can’t be too hasty: choosing a new home that is too small or too exposed could be equally deadly.

Our homeless honeybee swarm found an unconventional "branch". We'd better
decide on a new home soon! Photo by Nino Barbieri at Wikimedia.

Although each swarm has a queen, she plays no role in making this life-or-death decision. Rather, this decision is made by a consensus among 300-500 scout bees after an intense “dance-debate”. Then, as a single united swarm, they leave their branch and move into their new home. At this point, it’s critical that the swarm is unified in their choice of home site, because a split-decision runs the risk of creating a chaos in which the one and only queen can be lost and the entire hive will perish. This is a high-stakes decision that honeybees make democratically, efficiently, and amazingly, they almost always make the best possible choice! How do they do that? And how can we do that?

The honeybee house-hunting process has several features that allow them, as a group, to hone in on the best possible solution. The process begins when a scout discovers a site that has the potential to be a new home. She returns to her swarm and reports on this site, using a waggle dance that encodes the direction and distance to the site and her estimate of its quality. The longer she dances, the more suitable she perceived the site to be. Other scouts do the same, perhaps visiting the same site or maybe a new one, and they report their findings in dance when they return. (Importantly, scouts only dance for sites that they have seen themselves). As more scouts are recruited, the swarm breaks into a dancing frenzy with many scouts dancing for multiple possible sites. Over time, scouts that are less enthusiastic about their discovered site stop dancing, in part discouraged by dancers for other sites that head-bump them while beeping. Eventually, the remaining dancing scouts are unified in their dance for what is almost always the best site. The swarm warms up their flight muscles and off they go, in unison, to their new home.

Each dot represents where on the body this dancer was head-bumped by a dancer for a
competing site. Each time she's bumped, she's a little less enthusiastic about her own dance.
Figure from Seeley, et al. 2012 paper in Science.

What can we learn from these democratic experts? As much as I would love to see Congress in a vigorous dance-debate head-butting one another, I don't think that is the take-home message of choice. Tom Seeley at Cornell University has gained tremendous insight into effective group decision-making from his years observing honeybees, which he shares with us in his book, Honeybee Democracy. Tom has summarized his wisdom gained from observing honeybees in the following:

Members of Highly Effective Hives:

1. share a goal

2. search broadly to find possible solutions to the problem

3. contribute their information freely and honestly

4. evaluate the options independently and vote independently

5. aggregate their votes fairly

All of these critical guidelines can be encapsulated with a single objective: The decision-making body needs to objectively consider a range of information from individuals with diverse backgrounds, expertise, and knowledge. We can apply this to our own human decision-making: It means that we all need to vote objectively and honestly and independently. This means casting votes that are consistent with our own information and judgements, even when they are not consistent with the policical party we may align ourselves with. It also means that if you don't agree with the decisions of your School Board, Town Board, City Council, County Legislature, State Legislature, or National Legislature, then your background, expertise and knowledge are likely missing from the deciding body. Yes, you can write and call your representatives and provide them with part of your knowledge, or you can run for office yourself and make people with your background truly included in the decision-making process.

Many feel that our hive has been homelessly clinging to our exposed branch for too long. If we are going to make good, well-informed, effective, and efficient decisions, we need open and respectful communication across diverse backgrounds. Independent thinking and diversity improves the quality of the decisions that affect us all. If honeybees can do it, so can we.


Want to know more? Check these out:

1. Honeybee Democracy by Thomas Seeley

2. Seeley, T., Visscher, P., Schlegel, T., Hogan, P., Franks, N., & Marshall, J. (2011). Stop Signals Provide Cross Inhibition in Collective Decision-Making by Honeybee Swarms Science, 335 (6064), 108-111 DOI: 10.1126/science.1210361

3. List, C., Elsholtz, C., & Seeley, T. (2009). Independence and interdependence in collective decision making: an agent-based model of nest-site choice by honeybee swarms Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1518), 755-762 DOI: 10.1098/rstb.2008.0277

Tuesday, October 30, 2018

Nature's Halloween Costumes

A repost of an original article from October 23, 2013.

Image by Steve at Wikimedia Commons.
It seems like everyone is racking their brains to come up with a great Halloween costume. But we’re not the only ones to disguise ourselves as something we’re not. Many animals put on costumes just like we do. Take this gharial crocodile for example (do you see him?), covering himself in parts of his environment to hide.

Other animals, like this tawny frogmouth below, develop physical appearances that help them blend in with their surroundings. When threatened, these birds shut their eyes, erect their feathers and point their beak in such a way to match the color and texture of the tree bark.

Image by C Coverdale at Wikimedia Commons.
Rather than hide, some animals have a physical appearance to disguise themselves as other species that are often fierce, toxic or venomous. This type of mimicry is called Batesian mimicry, named after Henry Walter Bates, the English naturalist who studied butterflies in the Amazon and gave the first scientific description of animal mimicry. This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of the Amazon Valley: Heliconiidae, illustrates Batesian mimicry between various toxic butterfly species (in the second and bottom rows) and their harmless mimics (in the top and third rows).

This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of
the Amazon Valley: Heliconiidae is available on Wikipedia Commons.
The bluestriped fangblenny takes its costume another step further, by changing its shape, colors, and behavior to match the company. This fish changes its colors to match other innocuous fish species that are around so it can sneak up and bite unsuspecting larger fish that would otherwise bite them back! Learn more about them here.

The fish on the far left is a juvenile cleaner wrasse in the act of cleaning another fish. The two fish in
the middle and on the right are both bluestriped fangblennies, one in its cleaner wrasse-mimicking
coloration (middle) and the other not (right). Figure from the Cheney, 2013 article in Behavioral Ecology.
But the Master of Disguise title has got to go to the mimic octopus. This animal can change its color, shape and behavior to look and behave like a wide range of creatures, including an innocuous flounder, a poisonous lionfish, or even a dangerous sea snake! Check it out in action:




Tuesday, October 23, 2018

Vampires!

Photo by Alejandro Lunadei at Wikimedia.
A reposting of an original article from October 19, 2015

Vampire mythologies have been around for thousands of years, terrifying the young and old alike with stories of predatory bloodsuckers that feed on our life essences. You may not believe in vampires, but they are all around us. In fact, you may have some in the room with you right now! You just don’t notice them because they are not human, or even human-like.

Vampires feed on the blood of their victims in order to sustain their own lives. This phenomenon, called hematophagy, is more common than typically occurs to us at first. Just take mosquitoes and ticks as examples. Once we’ve opened our minds to the idea of bloodthirsty arthropods, we quickly think of many more: bedbugs, sandflies, blackflies, tsetse flies, assassin bugs, lice, mites, and fleas. In fact, nearly 14,000 arthropod species are hematophages. We can expand our thoughts now to worms (like leeches), fish (such as lampreys and candirús), some mammals (vampire bats), and even some birds (vampire finches, oxpeckers, and hood mockingbirds). We’ve been surrounded by vampires our whole lives, we just never sat up to take notice!

Hematophagous animals are not as scary as mythical vampires, in part because they don’t suck their victims dry – they just take a small blood meal to sustain their tiny bodies. Hematophagy is not, in itself, lethal. However, the process of exposing and taking the blood of many individuals transmits many deadly diseases, like malaria, rabies, dengue fever, West Nile virus, bubonic plague, encephalitis, and typhus.

Because blood feeders do not kill their meals, feeding can be even more dangerous for them than for traditional predators. As a result, many hematophagous animals have developed a similar toolkit. Many have mouthparts that are specialized to work as a needle or a razor and biochemicals in their saliva that work as anticoagulants and pain killers. Their primary skill, however, is their stealth: they can sneak up on you, eat their meal, and be home for bed before you even notice the itch.

Although a few species, like assassin bugs and vampire bats, are obligatory hematophages (only eat blood), most hematophages eat other foods as well. Somehow, Dracula is not quite so intimidating when you imagine him drinking his morning fruit juice, like many mosquitoes do.

Why drink blood in the first place? Blood is a body tissue like any other, and it contains a lot of protein and a variety of sugars, fats and minerals, just like meat. However, blood is mostly water, which means that a blood meal contains less protein and calories than the same weight of meat. Because you need to consume so much more to get enough protein and calories out of a meal, large animals and animals that generate their own body heat can't usually rely on blood meals alone. So much for human-like vampires that only live off the blood of their victims.

A deadly vampire spreading malaria. Photo by the CDC available at Wikimedia.

So true vampires are everywhere, but they are small, take small blood meals, don't generally kill their hosts, and often use blood to supplement their other meals. Not so scary any more, are they? ...Although, about 3.2 billion people (about half the world's population) are at risk of contracting the deadly disease, malaria, from these bloodsuckers... so maybe you aren't scared enough. Bwaa-haha!

Tuesday, September 4, 2018

Why Ask for Directions? (A Guest Post)

A reposting of an original article by Anna Schneider on Feburary 8, 2016.

For the iconic monarch butterfly, the shorter days in fall mean it’s time to pack up and head south to a warmer climate! Just like clockwork, the Eastern population of monarch butterflies makes a 2000 mile journey to their winter paradise roosts in central Mexico. The journey in itself is one of the greatest migrations among all animals.

But here’s the catch: none of these butterflies has made this trip before. Several generations of monarchs have come and gone over the course of a summer, but the generation born in late August and early September are genetically prepared for months of survival without feeding or breeding. But their predecessors didn’t exactly leave them with a map. How do they know where to go? Do they have a map and compass inside their heads? The answer: yes! Well, sort of…

Think about this: if you were lost in the woods and needed to find south, what would you do? Here’s a hint: look up! The sun can be a great resource when you’re lost, and I’m not talking about just asking it for directions. As the Earth rotates on its axis throughout the day, the sun appears to travel overhead. By knowing approximately what time of day it is, you can determine the cardinal directions. Monarchs use specialized cells or organs called photoreceptors that respond to light to establish the position of the sun.

Representation of time compensated sun compass orientation used by monarchs;
Image created by Anna Schneider.
Until recently, it was thought that monarchs simply used the photoreceptors on the top portion of their compound eyes, called the dorsal rim. Past studies have shown that the signals are passed from the photoreceptors on to the “sun compass” region in their brains and the butterflies change direction based on that information. Like most animals, it was assumed that their internal clock was located inside their brains. However, recent research has demonstrated that individuals whose antennae have been painted or removed altogether become disoriented when placed in flight simulators. These monarchs do not adjust for the time of day when trying to fly south. When those same antennae that were removed were placed in a petri dish, they continued to respond to light and showed signs that they continued the pattern of time. This indicates that antennae and the brain are both needed for the monarchs to correctly determine their direction.

Diagram of features on the head of a monarch butterfly; Image created by Anna Schneider.
Now, estimating which way is South might be fine and dandy on a bright sunny day, but what happens when it’s cloudy? Not a problem for these super-insects! In another recent study, researchers tethered monarchs to flight simulators and altered the magnetic field conditions to see what would happen. When the magnetic field was reversed so magnetic North was in the opposite direction, the butterflies altered their bearings and flew exactly opposite as well. This suggests that monarchs could have some sort of way to detect the earth’s magnetic field, called magnetoreception, which could enhance the photoreception capabilities.

Many of the mechanisms behind the migration of these incredible creatures are yet to be discovered, but much progress has been made in the past decade. So next time you see a monarch butterfly, take a second look. There is more than meets the eye.

Sources:

Gegear, R., Foley, L., Casselman, A., & Reppert, S. (2010). Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism Nature, 463 (7282), 804-807 DOI: 10.1038/nature08719

Guerra, P., Gegear, R., & Reppert, S. (2014). A magnetic compass aids monarch butterfly migration Nature Communications, 5 DOI: 10.1038/ncomms5164

Merlin, C., Gegear, R., & Reppert, S. (2009). Antennal Circadian Clocks Coordinate Sun Compass Orientation in Migratory Monarch Butterflies Science, 325 (5948), 1700-1704 DOI: 10.1126/science.1176221

Steven M. Reppert. The Reppert Lab: Migration. University of Massachusetts Medical School: Department of Neurobiology.

Tuesday, January 23, 2018

Body Clocks: What They Are and How They Work

Lately, with the new year, the #TimesUp movement, awaiting Disney’s movie A Wrinkle in Time based on one of my favorite childhood book series, and just watching my children grow faster than I thought possible, I have been thinking a lot about time. The continuous march forward, the constant rotation of the planet, and the revolution of the Earth around a distant star in its determined path all have far-reaching effects on our physiology and behavior. Our biological clocks affect everything from our sleep-wake cycles to our fertility to our mental and physical health. And it’s not just us that have them: Every living thing on Earth, including bacteria, protists, fungi, plants and animals, has them. But what do they do and how do they work?

A sleepy ferret minds his biological rhythms. Photo by Kimberly Tamkun at Wikimedia Commons.

Generally speaking, a biological clock is an organism’s inborn way of regulating its functions with respect to time. Many of these biological clocks follow circadian rhythms (changes that follow a 24-hour cycle). Vast portions of our planet have been exposed to dramatic but mostly predictable environmental changes on a 24-hour cycle since long before life existed, so it makes sense that us lifeforms have developed a means to make the best of those changes: sleeping when food is less available, having higher metabolisms when we are active, being more alert during times we are most likely to be interacting with the world.

Diagram of a human circadian rhythm by YassineMrabet at Wikimedia Commons.

Melatonin is a hormone widely known to synchronize circadian rhythms in vertebrates (animals with backbones) to the light-dark cycle of the day and night (or to an indoor room with a light timer). Melatonin is produced in response to darkness, and the longer the night, the more melatonin is produced. Rising and falling melatonin levels help determine sleep-wake cycles in animals. In animals that breed seasonally, the changing peaks of melatonin levels that correspond with dark nights getting longer or shorter stimulate the reproductive system to help synchronize breeding physiology and behavior with the seasons. Although we have known about melatonin and its effects for nearly a hundred years, we are now learning that it seems that all organisms, including bacteria, protists, fungi, plants and animals, make it. Whether it has the same effect in all organisms is yet to be determined.

In vertebrates, melatonin is produced by the pineal gland, a small structure in the center of the brain. In birds, reptiles, amphibians and fish, the pineal gland has light-sensitive cells that receive light as it passes directly through the skull and the brain! In mammals, the pineal gland receives a light signal through a more complicated pathway: Light is detected by light sensitive cells in the retinas of the eyes. They send this signal to the suprachiasmatic nucleus (SCN) in the brain, which relays it to other brain areas and then to the pineal gland. The SCN in mammals is commonly called “the master clock” due to its important role in synchronizing body rhythms with light cues.

Diagram of the human brain and the SCN by the
National Institute of General Medical Sciences at Wikimedia Commons.

Body rhythms are determined at the cellular level through the interaction of a small number of genes called clock genes. Clock genes have been found in every animal, plant and fungus studied so far. Originally, it was thought that in mammals, clock genes would only be found in the SCN. However, it now looks like clock genes are active in all cells and the SCN functions more like an orchestra conductor synchronizing the rhythms of the organs throughout the body.

Many clock genes have been discovered, and they all seem to work based on similar processes. Just last year, scientists Jeffrey Hall, Michael Rosbash, and Michael Young, were awarded the 2017 Nobel Prize in medicine for their research on clock genes in fruitflies. They found that biological clocks are self-regulated within the cell: Morning sunlight turns on a gene called the PERIOD gene, which starts to produce a protein called the Period protein. As long as there is light, Period protein accumulates to higher and higher levels. Another protein, named Timeless, shuttles Period proteins into the nucleus, where the DNA lives. The Period proteins shut down the activity of the PERIOD gene, while a third protein, called Doubletime, regulates the destruction of the excess Period proteins. The result of this process is that by nightfall, Period proteins have disappeared and sunlight is needed to start the cycle anew. This work by Hall, Rosbash and Young inspired a whole new field of molecular biology of circadian rhythms.

We have a lot more to learn about biological clocks and circadian rhythms, but what we do know is that their effects are wide-ranging. Whacky circadian rhythms have been implicated in sleep disorders, depression, bipolar disorder, cancer, obesity, and diabetes. And what else will we learn about them? Only time will tell.