Monday, February 8, 2016

Why Ask for Directions? (A Guest Post)

by Anna Schneider

For the iconic monarch butterfly, the shorter days in fall mean it’s time to pack up and head south to a warmer climate! Just like clockwork, the Eastern population of monarch butterflies makes a 2000 mile journey to their winter paradise roosts in central Mexico. The journey in itself is one of the greatest migrations among all animals.

But here’s the catch: none of these butterflies has made this trip before. Several generations of monarchs have come and gone over the course of a summer, but the generation born in late August and early September are genetically prepared for months of survival without feeding or breeding. But their predecessors didn’t exactly leave them with a map. How do they know where to go? Do they have a map and compass inside their heads? The answer: yes! Well, sort of…

Think about this: if you were lost in the woods and needed to find south, what would you do? Here’s a hint: look up! The sun can be a great resource when you’re lost, and I’m not talking about just asking it for directions. As the Earth rotates on its axis throughout the day, the sun appears to travel overhead. By knowing approximately what time of day it is, you can determine the cardinal directions. Monarchs use specialized cells or organs called photoreceptors that respond to light to establish the position of the sun.

Representation of time compensated sun compass orientation used by monarchs;
Image created by Anna Schneider.
Until recently, it was thought that monarchs simply used the photoreceptors on the top portion of their compound eyes, called the dorsal rim. Past studies have shown that the signals are passed from the photoreceptors on to the “sun compass” region in their brains and the butterflies change direction based on that information. Like most animals, it was assumed that their internal clock was located inside their brains. However, recent research has demonstrated that individuals whose antennae have been painted or removed altogether become disoriented when placed in flight simulators. These monarchs do not adjust for the time of day when trying to fly south. When those same antennae that were removed were placed in a petri dish, they continued to respond to light and showed signs that they continued the pattern of time. This indicates that antennae and the brain are both needed for the monarchs to correctly determine their direction.

Diagram of features on the head of a monarch butterfly; Image created by Anna Schneider.
Now, estimating which way is South might be fine and dandy on a bright sunny day, but what happens when it’s cloudy? Not a problem for these super-insects! In another recent study, researchers tethered monarchs to flight simulators and altered the magnetic field conditions to see what would happen. When the magnetic field was reversed so magnetic North was in the opposite direction, the butterflies altered their bearings and flew exactly opposite as well. This suggests that monarchs could have some sort of way to detect the earth’s magnetic field, called magnetoreception, which could enhance the photoreception capabilities.

Many of the mechanisms behind the migration of these incredible creatures are yet to be discovered, but much progress has been made in the past decade. So next time you see a monarch butterfly, take a second look. There is more than meets the eye.

Sources:

Gegear, R., Foley, L., Casselman, A., & Reppert, S. (2010). Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism Nature, 463 (7282), 804-807 DOI: 10.1038/nature08719

Guerra, P., Gegear, R., & Reppert, S. (2014). A magnetic compass aids monarch butterfly migration Nature Communications, 5 DOI: 10.1038/ncomms5164

Merlin, C., Gegear, R., & Reppert, S. (2009). Antennal Circadian Clocks Coordinate Sun Compass Orientation in Migratory Monarch Butterflies Science, 325 (5948), 1700-1704 DOI: 10.1126/science.1176221

Steven M. Reppert. The Reppert Lab: Migration. University of Massachusetts Medical School: Department of Neurobiology.

No comments:

Post a Comment