Tuesday, April 25, 2017

Can You Feel the Love Tonight? (A Guest Post)

A reposting of an article by Maggie Nannenhorn from March 14, 2016.

If you’re like me, you never truly realize how quiet winter is until all the sounds of spring come back in a chorus of celebration. Between the birds, crickets, and frogs, you can really hear the love in the air. So you can hear the love, but can you feel the love?

Wood frogs are known for their chorus of calls that sound like a duck laughing. Seriously, tell a duck a good knock-knock joke and that is what a male wood frog sounds like when trying to attract a mate. He makes the call by expanding his two vocal sacs, membranes of skin underneath the neck, forming a bubble-like appearance. When a female surfaces, drawn to the call, the male frog clasps onto her, causing her to lay her eggs. The male frog then externally fertilizes the eggs. This form of mating is termed amplexus. The use of the call in the reproduction ritual is well studied. However, it is possible the small ripple formed in the water from the expanding vocal sack is relaying information that influences the mating behavior of these frogs.


Male wood frog resting on the water surface. Image by Maggie Nannenhorn.
Male wood frog calling with vocal sac expanded.
Notice the ripple it creates in the water. Image by Maggie Nannenhorn.

In 2010, Gerlinde Höbel and Robb Kolodziej from the University of Wisconsin-Milwaukee conducted an experiment that explored the use of water surface waves in wood frog reproductive behavior. They hypothesized male wood frogs use ripples in the water to find female wood frogs to mate with, while female wood frogs use ripples in the water as indicators of harassing males.


Video of a wood frog calling by Maggie Nannenhorn.

Wood frogs have a very short mating period: only 1 to 3 days per year! This study occurred on April 1st - 2nd, which corresponded with the wood frogs’ natural mating period. The first component of the study was the observation of a pond containing more than 500 wood frogs in amplexus. Amplexus was determined by the presence of males clasping on to the backs of female frogs in the water. They learned males approach surface waves on the water and clasp onto the frog that caused the ripple. However, females move away from surface waves on the water and dive downward.

After preliminary observations, they developed an experiment to cause rippling of the water. The first experiment tested the effect of stimulation (dipping a wooden probe into the water) near male wood frogs. The males tested were randomly assigned to either a control group or an experimental group. The 34 males in the control group were simply observed, and the direction and pattern of movement was recorded. For the experimental group, a long wooden probe was dipped in and out of the water 25 cm away from a male frog for 10 seconds. The resulting ripple was meant to mimic a ripple caused by a female frog moving in the water. Based on the hypothesis, the male wood frogs should approach the ripple hoping to find a female to mate with. Of the 60 males in the experimental group, half were stimulated from the right and half were stimulated from the left. A circle diagram (depicted below) was used to map the direction the males moved.


Video of a wood frog approaching ripples by Gerlinde Höbel.


This figure shows: a) the control group and b) the experimental group.
A circle diagram representing the reproductively driven movement direction
of wood frogs (Lithobates sylvaticus) in a laboratory pool as a result of
stimulated surface waves on both the left and right sides.
Figure from: Höbel, G., & Kolodziej, R. C. (2013). Behaviour, 150(5), 471-483.

The females are difficult to observe in the field since they prefer to stay beneath the surface. So, the researchers set up a tank to test 4 breeding pairs of wood frogs. They tested the females both while in amplexus and while alone. They dipped wooden probes into the water to stimulate the females on both the left and the right side in turn. Their positions and directions were also recorded using a circle diagram.

So, what did they find? It turns out, their predictions were correct! The males would approach the ripple caused by the probing. This is likely because the ripple may indicate a competing male they want to drive away or a female they want to mate with. The females moved away from the ripples by either swimming away or diving underneath the water surface. This may reduce the amount of harassment they receive from males. If a female becomes the center of attention for too many males, she may drown from the weight of them all attempting to grab her. Besides, if a male is fit, he will likely be able to catch up to her and successfully mate with her despite her swimming away.

The mating calls and movement of the wood frogs affect the surface waves, and these waves are used to make sexual behavior choices. This spring, the chorus of love will still ring out through the reeds, and I encourage you to take a moment to stop and listen. When you’re stopped, take a moment to notice the waves of love bringing these wood frogs together. Hopefully this spring, we will all be feeling the love.



Reference:


Höbel, G., & Kolodziej, R. (2013). Wood frogs (Lithobates sylvaticus) use water surface waves in their reproductive behaviour Behaviour, 1-13 DOI: 10.1163/1568539X-00003062

Tuesday, April 18, 2017

What to Do If You Find Orphaned Wildlife

A reposting of an article from April 11, 2016.

A nest of baby cottontails waiting for sunset when their
mom will return. Image by Jhansonxi at Wikimedia.
Spring is finally in the air, and with Spring come babies! Finding baby animals in the wild is thrilling, but also concerning. Does this animal need your help? Where is its mom? What do you do?

Whenever possible, baby animals will do best when we leave them in the care of their mom. Even a well-meaning human is seen by a wild animal as a threat. Our interactions with them cause them extreme stress that can cause serious health problems and even death. Furthermore, if we take a baby animal home, it will not be able to learn its species-specific behaviors and skills and it can lose its natural and healthy fear of humans. It is also very hard to meet the specialized dietary needs of a wild animal in a captive setting. Taking a wild animal home can cause problems for us as well: many carry diseases that can be transmitted to our pets or even ourselves. And most wild animals are protected by state and federal laws that prohibit unlicensed citizens from possessing or raising them.

Luckily, most baby animals that seem alone actually have a mom that is not far away, either looking for food to feed herself and her babies or simply hiding from you. For example, rabbit mothers actively avoid their nests most of the time so as to not attract predators to the nest. Cottontail moms visit their babies only briefly at dawn and dusk for quick feedings. If you find a bunny nest, you can test to see if the mom is visiting by placing a few blades of grass or thin twigs in an X-shape over the babies. If you come back the next day and the pattern has been disturbed, then their mom is still caring for them and you should leave them be.

Many animal moms are prevented from taking care of their young when concerned people are hovering. Deer moms, for example, also actively avoid their babies (called fawns) so as to not attract predators to it. They generally return to nurse the fawns every few hours, but they won’t return to nurse if people or pets are around. If you find a fawn and it is not wandering and crying non-stop all day, then leave it alone so its mom will come back.

A red fox mom and baby. Photo by Nicke at Wikimedia.

Even if you find a baby all by itself in the open, the best course of action is often still to leave it alone. Many mammal moms, like squirrels, raccoons, mice, rats, foxes, and coyotes, will retrieve their young if they fall out of their nest or wander away from their den. Although it is a myth that most animal moms will abandon their babies if you get your smell on them, your odor can attract predators. It is best not to touch wildlife babies if you can avoid it.

Awww... as tempting as it is to pick up an adorable baby skunk, don't do it
unless you are a trained and licensed wildlife rehabilitator (like this woman is).
Image by AnimalPhotos at Wikimedia.

So when should you get involved? If an animal is in a dangerous location (like a busy street), then it may need to be moved. You can slowly, quietly and gently try to guide a mobile baby animal away from hazards and to a safer location. If the animal is not yet mobile, in most cases, you can use clean gloves to pick up the animal and move it to a safer location, placing it as close as possible to where you found it.

If you know that the mom is dead or has been relocated, then you are dealing with a truly orphaned baby animal. Likewise, if an animal has been attacked (or brought to you by your “helpful” cat), or is bleeding, injured, wet and emaciated, weak, infested with parasites, or has diarrhea, then it may need medical attention. In these cases, contact a licensed wildlife rehabilitator. Wildlife rehabilitators have been trained and have the necessary equipment to temporarily care for and treat injured, sick and orphaned wild animals so they can be released back into the wild. If you can’t find a wildlife rehabilitator, contact the Department of Natural Resources, a state wildlife agency, animal shelter, humane society, animal control agency, nature center, or veterinarian. Ideally, they will come to pick up the animal themselves. If they can’t, then they should give you detailed instructions for your situation on how to catch and transport the animal.

For more information, check here:

The Humane Society of the United States

The Wisconsin Department of Natural Resources

The Virginia Department of Game and Inland Fisheries

Tuesday, April 11, 2017

Risking Limb for Life? (A Guest Post)

By Matthew Whitley

Imagine you are walking alone in parking lot, when suddenly somebody grabs you by the arm and flashes a knife, demanding your money. Do you A) scream for help, B) try to wrestle the knife away, or C) remove your arm from your shoulder and make a break for it? Disarming your assailant may seem preferable to dis-arming yourself, but for a lizard option C is a likely response.

A lizard tail left behind. Image by Metatron at Wikimedia Commons.

You likely have heard before that many lizards can break off their tail when trying to make an escape. This ability is called caudal autotomy; autotomy meaning the ability to shed a limb, and caudal simply being a fancy word for tail. Of course, losing a limb is no simple procedure, and lizards possess many specialized features to make caudal autotomy possible.

There are two main kinds of caudal autotomy in lizards: intervertebral and intravertebral. Intervertebral refers to when the tail breaks between vertebrae, and is considered the simpler and more primitive form. Intravertebral, on the other hand, involves some more complex features. The word intravertebral refers to fracture planes found in the middle of each vertebra in the middle of the lizard’s tail. At these fracture planes, the bone can easily snap in half. This snapping of bone is performed by the lizard itself—when its tail is caught, muscles surrounding the bone just above where its tail is held squeeze tight until the bone breaks. After the bone breaks, the rest of the tail follows: the skin stretches and breaks, muscles detach, any remaining tissue divides, and—POP—the tail falls off!

After snapping your arm off to run from an attacker, you would probably just bleed out in your retreat, but lizards have that covered. In their tails, lizards have sphincters (rings of muscle) along their arteries—vessels that normally carry blood to the tail. When the tail is detached, these sphincters tighten to prevent blood from gushing out. Additionally, their veins, which normally bring blood back from the tail, have valves that prevent blood from flowing backwards, similar to the valves in your heart. And while the lizard makes its escape, the dislocated tail jerks and twitches, which distracts the lizard’s assailant. The tail owes its spastic actions to fast, glycolytic muscles, a variety of muscle that can act quickly and with a lot of force, but wears out quickly.

After our reptilian friend has made its daring escape, it has a new problem—it has no tail. A lizard without its tail is at a disadvantage, just as you would be without your arm. Lizards rely on their tails for several functions, including movement, nutrient storage, and social and sexual behaviors. Fortunately, lizards that exercise caudal autotomy can actually re-grow their tails, a process which itself is highly complex. In lieu of a lengthy explanation of another amazing phenomenon, I’ll share this tidbit: to regain lost nutrients and help recover, some lizards have been known to go back and eat their lost tail! So when you tear off your arm to escape a mugger, don’t forget to return to the scene of the crime to self-cannibalize…or maybe just buy some pepper spray beforehand.


Here you can see that the lizard is caught by the tail, pops it off and runs away, and the tail is left twitching.

Works Cited

Bateman, P., & Fleming, P. (2009). To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years Journal of Zoology, 277 (1), 1-14 DOI: 10.1111/j.1469-7998.2008.00484.x

Clause, A., & Capaldi, E. (2006). Caudal autotomy and regeneration in lizards Journal of Experimental Zoology Part A: Comparative Experimental Biology, 305A (12), 965-973 DOI: 10.1002/jez.a.346

Gilbert, E., Payne, S., & Vickaryous, M. (2013). The Anatomy and Histology of Caudal Autotomy and Regeneration in Lizards Physiological and Biochemical Zoology, 86 (6), 631-644 DOI: 10.1086/673889

Tuesday, April 4, 2017

Researchers Finally Ask: Does Your Cat Even Like To Be Around You?

This cat has had enough and is running away
from home. Photo by Danielle Menuey.
While dogs happily and obliviously boast the reputation of being “man’s best friend”, cats have a reputation of being antisocial, independent, and downright grumpy. But do cats really deserve that? Scientists finally decided to find out.

Kristyn Vitale Shreve and Monique Udell from Oregon State University and Lindsay Mehrkam from Monmouth University asked 25 pet cats and 25 shelter cats their preferences.

How do you ask a cat what it prefers, you ask? You run a preference test, of course! A preference test is an experiment in which you place two or more things at equal distances from a subject and then test which of those things the subject spends the most time with.

Researchers suggest that these are some happy cats. Photo by Courtney Magnuson.

The researchers wanted to know if cats preferred: (1) food, (2) toys, (3) social interactions with humans, or (4) interesting odors. The trouble with that, however, is that there are many different foods, toys, interactions, and odors to choose from. So first, the researchers tested each cats' preferences within each category.

Will work for food. Photo by Charity Juang.
For food, the researchers put a soft chicken-flavored treat, actual chicken, and tuna into and around three puzzle boxes (so the cats would have easy access to taste some of each food, but couldn’t quickly gobble it up) and measured where the cats spent their time over a 3-minute period. Most of the cats liked the tuna most, next followed by the chicken, and they liked the soft treat the least.

For toys, the researchers made a movement toy by attaching a Dancer 101 Cat Dancer Interactive Cat Toy to a board and placing a GoCat Da Bird Feather Toy on the end with clear fishing line that was moved by an experimenter who was hidden outside the room. They then offered the movement toy, a still GoCat Da Bird Feather Toy on a board and a fuzzy shaker-mouse and they measured which toys the cats interacted with over a 3-minute period. Most of the cats liked the movement toy most, and they didn’t have much of a preference between the other two toys.

To test for cat preferences for types of human interactions, the cat’s owner (if it was a pet cat) or a researcher (if it was a shelter cat) spent one minute talking to the cat, another minute petting the cat (or holding their hand out to offer petting), and another minute playing with the cat with the feather toy (or holding out the toy). Researchers measured what proportion of each minute the cat spent interacting with the human. The cats interacted most with the humans during the play condition, next followed by petting, and least of all talking.

To see what odors cats preferred, the researchers put out cloths embedded with the scent of a gerbil (a potential prey), another cat, or catnip. The cats overwhelmingly preferred the catnip.

The preference test. Image from Vitale Shreve et al. 2017.

Once the researchers figured out what each cat preferred in each category, they set up a four-way grid with their favorite food, toy, social interaction, and odor and let them spend the next three minutes any way they liked.

Although there was a lot of variation among cats, 50% of the cats most preferred the social interaction with the human... even over food! Interestingly, the pet cats (who interacted with their owners) were no different in this regard than the shelter cats (who interacted with a researcher). But 37% of the cats most preferred food (maybe you have one of these cats). 11% preferred toys over all else. Only 1 cat (a pet named Hallie) preferred odor… the catnip fiend!

So although cats all have their own personalities, most of them really do like people. And they especially like to play with people. And, it turns out, they even do better at this than dogs (most of whom prefer food over people, when it really comes down to it). So go play with your kitty and give her some tuna… she’ll love you for it.

And, yes. This means that even cats can be trained with human interaction and food:


...But maybe not this one:

Some cats need more work than others. Photo by Jen Bray.


Want to know more? Check this out:

Vitale Shreve, K., Mehrkam, L., & Udell, M. (2017). Social interaction, food, scent or toys? A formal assessment of domestic pet and shelter cat ( Felis silvestris catus ) preferences Behavioural Processes DOI: 10.1016/j.beproc.2017.03.016