Tuesday, October 30, 2018

Nature's Halloween Costumes

A repost of an original article from October 23, 2013.

Image by Steve at Wikimedia Commons.
It seems like everyone is racking their brains to come up with a great Halloween costume. But we’re not the only ones to disguise ourselves as something we’re not. Many animals put on costumes just like we do. Take this gharial crocodile for example (do you see him?), covering himself in parts of his environment to hide.

Other animals, like this tawny frogmouth below, develop physical appearances that help them blend in with their surroundings. When threatened, these birds shut their eyes, erect their feathers and point their beak in such a way to match the color and texture of the tree bark.

Image by C Coverdale at Wikimedia Commons.
Rather than hide, some animals have a physical appearance to disguise themselves as other species that are often fierce, toxic or venomous. This type of mimicry is called Batesian mimicry, named after Henry Walter Bates, the English naturalist who studied butterflies in the Amazon and gave the first scientific description of animal mimicry. This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of the Amazon Valley: Heliconiidae, illustrates Batesian mimicry between various toxic butterfly species (in the second and bottom rows) and their harmless mimics (in the top and third rows).

This plate from Bates’ 1862 paper, Contributions to an Insect Fauna of
the Amazon Valley: Heliconiidae is available on Wikipedia Commons.
The bluestriped fangblenny takes its costume another step further, by changing its shape, colors, and behavior to match the company. This fish changes its colors to match other innocuous fish species that are around so it can sneak up and bite unsuspecting larger fish that would otherwise bite them back! Learn more about them here.

The fish on the far left is a juvenile cleaner wrasse in the act of cleaning another fish. The two fish in
the middle and on the right are both bluestriped fangblennies, one in its cleaner wrasse-mimicking
coloration (middle) and the other not (right). Figure from the Cheney, 2013 article in Behavioral Ecology.
But the Master of Disguise title has got to go to the mimic octopus. This animal can change its color, shape and behavior to look and behave like a wide range of creatures, including an innocuous flounder, a poisonous lionfish, or even a dangerous sea snake! Check it out in action:




Tuesday, October 23, 2018

Vampires!

Photo by Alejandro Lunadei at Wikimedia.
A reposting of an original article from October 19, 2015

Vampire mythologies have been around for thousands of years, terrifying the young and old alike with stories of predatory bloodsuckers that feed on our life essences. You may not believe in vampires, but they are all around us. In fact, you may have some in the room with you right now! You just don’t notice them because they are not human, or even human-like.

Vampires feed on the blood of their victims in order to sustain their own lives. This phenomenon, called hematophagy, is more common than typically occurs to us at first. Just take mosquitoes and ticks as examples. Once we’ve opened our minds to the idea of bloodthirsty arthropods, we quickly think of many more: bedbugs, sandflies, blackflies, tsetse flies, assassin bugs, lice, mites, and fleas. In fact, nearly 14,000 arthropod species are hematophages. We can expand our thoughts now to worms (like leeches), fish (such as lampreys and candirús), some mammals (vampire bats), and even some birds (vampire finches, oxpeckers, and hood mockingbirds). We’ve been surrounded by vampires our whole lives, we just never sat up to take notice!

Hematophagous animals are not as scary as mythical vampires, in part because they don’t suck their victims dry – they just take a small blood meal to sustain their tiny bodies. Hematophagy is not, in itself, lethal. However, the process of exposing and taking the blood of many individuals transmits many deadly diseases, like malaria, rabies, dengue fever, West Nile virus, bubonic plague, encephalitis, and typhus.

Because blood feeders do not kill their meals, feeding can be even more dangerous for them than for traditional predators. As a result, many hematophagous animals have developed a similar toolkit. Many have mouthparts that are specialized to work as a needle or a razor and biochemicals in their saliva that work as anticoagulants and pain killers. Their primary skill, however, is their stealth: they can sneak up on you, eat their meal, and be home for bed before you even notice the itch.

Although a few species, like assassin bugs and vampire bats, are obligatory hematophages (only eat blood), most hematophages eat other foods as well. Somehow, Dracula is not quite so intimidating when you imagine him drinking his morning fruit juice, like many mosquitoes do.

Why drink blood in the first place? Blood is a body tissue like any other, and it contains a lot of protein and a variety of sugars, fats and minerals, just like meat. However, blood is mostly water, which means that a blood meal contains less protein and calories than the same weight of meat. Because you need to consume so much more to get enough protein and calories out of a meal, large animals and animals that generate their own body heat can't usually rely on blood meals alone. So much for human-like vampires that only live off the blood of their victims.

A deadly vampire spreading malaria. Photo by the CDC available at Wikimedia.

So true vampires are everywhere, but they are small, take small blood meals, don't generally kill their hosts, and often use blood to supplement their other meals. Not so scary any more, are they? ...Although, about 3.2 billion people (about half the world's population) are at risk of contracting the deadly disease, malaria, from these bloodsuckers... so maybe you aren't scared enough. Bwaa-haha!

Tuesday, October 16, 2018

The Smell of Fear

A repost of an original article from October 24, 2012.

Several animals, many of them insects, crustaceans and fish, can smell when their fellow peers are scared. A kind of superpower for superwimps, this is an especially useful ability for prey species. An animal that can smell that its neighbor is scared is more likely to be able to avoid predators it hasn’t detected yet.

Who can smell when you're scared? Photo provided by Freedigitalphotos.net.

“What does fear smell like?” you ask. Pee, of course.

I mean, that has to be the answer, right? It only makes sense that the smell of someone who has had the piss scared out of them is, well… piss. But do animals use that as a cue that a predator may be lurking?

Canadian researchers Grant Brown, Christopher Jackson, Patrick Malka, Élisa Jaques, and Marc-Andre Couturier at Concordia University set out to test whether prey fish species use urea, a component of fish pee, as a warning signal.

A convict cichlid in wide-eyed
terror... Okay, fine. They're
always wide-eyed. Photo by
Dean Pemberton at Wikimedia.

First, the researchers tested the responses of convict cichlids and rainbow trout, two freshwater prey fish species, to water from tanks of fish that had been spooked by a fake predator model and to water from tanks of fish that were calm and relaxed. They found that when these fish were exposed to water from spooked fish, they behaved as if they were spooked too (they stopped feeding and moving). But when they were exposed to water from relaxed fish, they fed and moved around normally. Something in the water that the spooked fish were in was making the new fish act scared!

To find out if the fish may be responding to urea, they put one of three different concentrations of urea or just plain water into the tanks of cichlids and trout. The cichlids responded to all three doses of urea, but not the plain water, with a fear response (they stopped feeding and moving again). The trout acted fearfully when the two highest doses of urea, but not the lowest urea dose or plain water, were put in their tank. Urea seems to send a smelly signal to these prey fish to “Sit tight – Something scary this way comes”. And the more urea in the water, the scarier!

But wait a minute: Does this mean that every time a fish takes a wiz, all his buddies run and hide? That would be ridiculous. Not only do freshwater fish pee a LOT, many are also regularly releasing urea through their gills (I know, gross, right? But not nearly as gross as the fact that many cigarette companies add urea to cigarettes to add flavor).

The researchers figured that background levels of urea in the water are inevitable and should reduce fishes fear responses to urea. They put cichlids and trout in tanks with water that either had a low level of urea, a high level of urea, or no urea at all. Then they waited 30 minutes, which was enough time for the fish to calm down, move around and eat normally. Then they added an additional pulse of water, a medium dose of urea, or a high dose of urea. Generally, the more urea the fish were exposed to for the 30 minute period, the less responsive they were to the pulse of urea. Just like the scientists predicted.

A rainbow trout smells its surroundings.
Photo at Wikimedia taken by Ken Hammond at the USDA.

But we still don’t know exactly what this means. Maybe the initial dose of urea makes the fish hide at first, but later realize that there was no predator and decide to eat. Then the second pulse of urea may be seen by the fish as “crying wolf”. Alternatively, maybe the presence of urea already in the water masks the fishes’ ability to detect the second urea pulse. Or maybe both explanations are true.

Urea, which is only a small component of freshwater fish urine, is not the whole story. Urea and possibly stress hormones make up what scientists refer to as disturbance cues. Steroid hormones that are involved in stress and sexual behaviors play a role in sending smelly signals in a number of species, so it makes sense that stress hormones may be part of this fearful fish smell. But fish also rely on damage-released alarm cues and the odor of their predators to know that a predator may be near. Scientists are just starting to get a whiff of what makes up the smell of fear.

Want to know more? Check these out:

1. Brown, G.E., Jackson, C.D., Malka, P.H., Jacques, É., & Couturier, M-A. (2012). Disturbance cues in freshwater prey fishes: Does urea function as an ‘early warning cue’ in juvenile convict cichlids and rainbow trout? Current Zoology, 58 (2), 250-259

2. Chivers, D.P., Brown, G.E. & Ferrari, M.C.O. (2012). Evolution of fish alarm substances. In: Chemical Ecology in Aquatic Systems. C. Brömark and L.-A. Hansson (eds). pp 127-139. Oxford University Press, Oxford.

3. Brown, G.E., Ferrari, M.C.O. & Chivers, D.P. (2011). Learning about danger: chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In: Fish Cognition and Behaviour, 2nd ed. C. Brown, K.N. Laland and J. Krause (eds). pp. 59-80, Blackwell, London.

Tuesday, October 9, 2018

Caught in My Web: Mind-Altering Substances

Image by Luc Viatour at Wikimedia Commons
Drunken birds have gone viral this week! For this edition of Caught in My Web, we wonder if animals alter their mental states like people do.

1. Drunk Minnesotan birds are flying into windows! At least that is what the viral story says. But the truth may be a bit more measured. As the Police Chief of Gilbert, Minnesota says, “It sounds like every bird in our town is hammered, and that’s not the case.” Read the real story here.

2. But do wild animals really drink alcohol? Not in the way that we do, maybe, but many consume overly fermented fruits. Some have developed a tolerance to the high alcohol content, others, not so much. Just ask this poor drunk moose that got herself stuck in a tree after eating too many fermented apples.

3. But it’s not just fermented fruits that get animals drunk. Some fish can make their own alcohol to help them survive a long winter under the ice.

4. What about the effects of other mind-altering substances on animals? Ever wonder what kind of web a spider would make on different drugs? In 1948, a zoologist at the University of Tubingen in Germany by the name of H.M. Peters did.



5. Octopuses are normally very solitary creatures… that is, unless they are given ecstasy. Apparently, even octopuses seek social interactions when they take the common party drug.

Tuesday, October 2, 2018

Friends Without Benefits: A Guest Post

A reposting of an original article by Joseph McDonald

Do you want to avoid the friend zone?
Photo by freedigitalphotos.net.
Guys DREAD the friend zone. That heart-aching moment when the girl you’ve been fawning over for years says you’re the best listener, the sister she never had, or so much better than a diary! You’ve been so nice to her and her friends, listening to all their drama. But that’s just the problem... you’re too nice to too many people.

Research performed by Aaron Lukaszewski and Jim Roney at the University of California – Santa Barbara (UCSB) tested whether preferences for personality traits were dependent on who the target was. In Experiment 1, they asked UCSB undergrads, on a scale from 1 to 7, the degree to which their ideal partner would display certain traits towards them and towards others. These traits included synonyms for kindness (e.g. affectionate, considerate, generous, etc.), trustworthiness (committed, dependable, devoted, etc.), and dominance (aggressive, brave, bold, etc.). Experiment 2 replicated the procedures of Experiment 1. The only difference was that the term “others” was divided into subsets including unspecified, family/friends, opposite sex non-family/friend, and same-sex non-family/friend.

Let’s go over the do’s and don’ts so that future “nice guys” aren’t friend zoned. According to the findings, as graphed below:

Figure from Aaron and Jim's 2010 Evolution and Human Behavior paper.
1. Women generally prefer men who are kind and trustworthy. So, to get that girl, don’t be mean; that’s not the point. This isn’t 3rd grade so don’t pull her hair and expect her to know that you LIKE-like her.

2. Women prefer men who are kinder and more trustworthy towards them than anyone else. So it’s not so much whether you are nice enough, its whether she knows you are nicer to her than anyone else.

3. Women prefer men who display similar amounts of dominance as they do kindness. Dominance isn’t a bad thing, as long as you can distinguish her friends from her foes; especially her male friends.

4. To make things more complicated, women also prefer men who are directly dominant toward other men but don’t display dominance toward them or their family/friends, whether male or female. Some guys may want to befriend these other men, but be weary. Women preferred dominance over kindness in this situation, so kindness may not be enough.

These preferences may have developed to avoid mating with someone willing to expend physical and material resources for extramarital relationships, and invest greater in her and the children. Moderate kindness and trustworthiness toward others will maintain social relationships and prevent detrimental relationships, which may be why women generally prefer kind and trustworthy guys. But in all fairness, women can be in the friend zone too; just look at Deenah and Vinny (excuse the shameful Jersey Shore reference).

There are some things that guys look for in a mate, so ladies, here is a little advice:

1. Guys generally want a mate who is kind and trustworthy, too. We’re not that different; so don’t act a little crazy because you think he likes it. He doesn’t.

2. Guys also prefer women who display dominance toward other women (non- family/friend). Don’t be afraid to put that random girl with the prying eyes in her place.

Contrary to the hypotheses predicting female mate preferences, male mate preferences may have developed as a way to take advantage of strong female-based social hierarchies. No matter what the reasoning, however, if you can
1) be kinder and more trustworthy towards that special someone than anyone else and
2) display dominance over other same-sex people, then feel free to say good-bye to the friend zone!


For further details, check out the original experiment:

Lukaszewski, A., & Roney, J. (2010). Kind toward whom? Mate preferences for personality traits are target specific Evolution and Human Behavior, 31 (1), 29-38 DOI: 10.1016/j.evolhumbehav.2009.06.008