Sunday, October 13, 2019

4 Real-Life Monsters

A repost of an original article published October 26, 2015.

During the Halloween season, we find ourselves surrounded by monsters in movies, stores and decorations. We laugh at the ridiculousness of it all, oblivious to the fact that there are true monsters on our planet today! Mind you, these are not monsters in that they are evil, but they do have many of the same abilities and inclinations of our own mythical werewolves, vampires, zombies and shape-shifters.


Werewolf birds:


A Barau's petrel. Photo by SEOR
available at Wikimedia Commons.
Barau’s petrel is a migrating sea bird that is most active during nights with a full moon. Researchers tied bio-loggers on the birds’ feet to track their activity levels and found that under the full moon, the birds spent nearly 80% of these moonlit nights in flight! It is thought that since these birds migrate longitudinally (parallel with the equator), they can’t use changes in day length as a cue to synchronize their breeding, so they use the phases of the moon instead.


Vampire bats:


Three different bat species feed solely on blood: the common vampire bat, the hairy-legged vampire bat and the white-winged vampire bat. Feeding on blood is not uncommon – The actual term for it is hematophagy, and it is common in insects (think of those pesky mosquitos) and leeches. Although we don’t commonly think of it this way, blood is a body tissue and, like meat, it is rich in protein and calories. The reason it has not become a more popular food source among mammals is probably because it is so watered down (literally) compared to meat, that it can’t provide enough nutrition to sustain a large warm-bodied mammal. This is where our little vampire bat friends come in… small, stealthy, and with specialized saliva that prevents their victims’ blood from clotting, these guys are able to take advantage of this abundant resource, drinking up to half of their body weight in blood every night.



Zombees:


Scientists have recently discovered some strange honey bees: They mindlessly leave their hives in the middle of the night and fly in circles, often towards lights. It turns out that these honey bees are being parasitized by a species of phorid fly called the zombie fly. Female phorid flies lay their eggs inside the abdomens of honey bees, where the eggs hatch into larvae. The larvae feed on the insides of their bee hosts until they are mature enough to leave through the poor bee’s neck (the honey bee is generally dead by this time). Once out, the zombie flies develop into adults so they can breed and start the cycle anew with a new bee host. This phenomenon is still in the early stages of discovery, so if you would like to get involved in this project by watching honey bees in your area, check out ZomBee Watch, a citizen science project to track this zombie infestation.



Shape shifters:


The mimic octopus is a small harmless octopus that lives on the exposed shallow sandy bottoms of river mouths. To avoid its many predators it has developed an amazing strategy: it pretends to be something else, morphing its body into new shapes, like the shape of a deadly lion-fish, a poisonous flatfish, a venomous banded sea-snake, or any number of other animals that live in the area. Not only does the mimic octopus change its shape, it also changes its behavior to match its “costume” to convincingly fool predators. Most cephalopods, which include octopuses, are well-known for their ability to change the color, pattern and texture of their skin to blend in with rocks, coral and plants. Furthermore, octopuses do not have rigid skeletal elements, which allows their bodies great flexibility in the forms they imitate. But this ability to change both physical appearance and behavior to switch back and forth among imitations of multiple species is unique to this astounding shape shifter.


Saturday, October 5, 2019

It Feels Good When You Sing a Song (In Fall)

A repost of an original article published October 3, 2012.

Most male songbirds will sing when they see a pretty female during the breeding season. But some male songbirds sing even when it’s not the breeding season. Why do so many birds sing in fall at all?

Maybe singing feels good… But how do you ask a bird if it feels good to sing? European starlings are one of those bird species that sing both in spring (the breeding season) and in fall (not the breeding season). Lauren Riters, Cindi Kelm-Nelson, and Sharon Stevenson at the University of Wisconsin at Madison did a series of ingenious experiments to ask starlings if and when it feels good to sing.

A European starling sings his fall-blues away. Photo by Linda Tanner at Wikimedia.

Psychologists have long used a paradigm called conditioned place preference (CPP) to evaluate whether an animal finds something rewarding or pleasurable. CPP is based on the idea that if an animal experiences something meaningless while at the same time experiencing something else that is rewarding, the animal will learn to associate these two things with each other in a phenomenon called conditioning. For example, a puppy that has learned that every time it sits it gets a treat, will find itself sitting more often.

A researcher can also compare how rewarding different types of treats are. If we want to know if puppies like carrots or steak better, we can give one group of puppies a carrot every time they sit and another group of puppies a piece of steak every time they sit. If the group of puppies that are conditioned with steak spend more time sitting, we can conclude that steak is more rewarding to puppies than carrots are.

Lauren and Sharon used this principle to ask starlings if singing is rewarding. They put spring starlings in a cage with a nestbox and a female and let them sing away, while counting how many songs they sang in 30 minutes. Then they immediately put them in another cage that was decorated with yellow materials on one side and green materials on the other, but they restricted each bird to only one of the two colored sides. This is the conditioning phase in which the bird learns to associate the colored cage with the feeling they get from singing.

The next day, they put the starlings in the yellow and green cage without restrictions so they could choose what side they wanted to hang out in. If singing is rewarding, we would expect starlings that sang a lot to spend more time on the side with the color they were placed in the day before.


Do people that sing in the car spend more time in the car?
Photo by freedigitalphotos.net.
That didn’t happen. The spring starlings spent the same amount of time in the yellow or green side of the cage regardless of how much they sang the day before.

But when Lauren and Sharon did the same test with fall starlings singing without a female, there has a huge effect: Males that sang more spent much more time on the colored side of the cage they were placed in the day before. Singing, for a male starling, is apparently rewarding in fall, but not in spring.

This result actually makes a lot of sense. In spring, males sing to attract and court females, so they are rewarded by the feeling they get from the female’s response, not from the act of singing itself. But in fall, males are not attracting females. So why do they sing in fall? Because it feels good.

It looks like Sesame Street got it right with their 1970s song “It Feels Good When You Sing a Song”:

You can't go wrong
when you're singing a song
Sing it loud, sing it strong
It feels good when you sing a song


But why does singing feel good? At least some of the reason, it seems, is opioids. Not quite what Sesame Street had in mind, but hey.

Despite their reputation for being one of the world’s oldest drugs, many opioids are naturally occurring neuropeptides (brain chemicals). They are involved in pain relief and euphoria, commonly combined in the phenomenon of runner’s high. Could opioids be involved in the feel-good sensation created by singing? Maybe.

Cindi, Sharon and Lauren suspect that singing in fall causes male starlings to release opioids in their little brains, which makes singing more rewarding and makes them want to sing more. But how do we know how much opioid an animal has in its brain? Hmmm… Opioids cause analgesia (pain relief). Therefore, if singing a lot in fall releases more opioids, then birds that sing a lot in fall should be more pain-tolerant, right? The researchers let male starlings sing and counted how many songs they produced for 20 minutes. Then they dipped their foot in uncomfortably warm water and timed how long it took for the bird to pull its toes out. Fall males that sang more took longer to pull their feet out of the birdy foot-spa than did the males that sang less.

Interestingly, if you give starlings a drug to enhance opioids, they leave their feet in the foot-spa longer than if you give them a drug to block opioids. So it seems that singing in fall increases pain tolerance in the same way that opioids do, likely because the act of singing in fall causes the brain to release its own opioids. (Although it is also possible that birds that produce more opioids feel like singing more).

And what about singing in spring? When Cindi, Sharon and Lauren repeated the study with spring starlings, these birds did not get pain relief from singing. Again, they are probably rewarded by their interactions with females and not the act of singing.

So if you ever find yourself in pain, just
Sing
Sing a song
Make it simple
To last your whole life long
Don't worry that it's not good enough
For anyone else to hear
Sing
Sing a song
La la la la la la la la la la la
La la la la la la la


Want to know more? Check these out:

1. Riters LV, & Stevenson SA (2012). Reward and vocal production: song-associated place preference in songbirds. Physiology & Behavior, 106 (2), 87-94 PMID: 22285212

2. Kelm-Nelson, C.A., Stevenson, S.A., & Riters, L.V. (2012). Context-dependent links between song production 1 and opioid-mediated analgesia in male European starlings (Sturnus vulgaris) PLOS One, 7 (10)

3. Riters LV, Schroeder MB, Auger CJ, Eens M, Pinxten R, & Ball GF (2005). Evidence for opioid involvement in the regulation of song production in male European starlings (Sturnus vulgaris). Behavioral neuroscience, 119 (1), 245-55 PMID: 15727529

4. Kelm CA, Forbes-Lorman RM, Auger CJ, & Riters LV (2011). Mu-opioid receptor densities are depleted in regions implicated in agonistic and sexual behavior in male European starlings (Sturnus vulgaris) defending nest sites and courting females. Behavioural brain research, 219 (1), 15-22 PMID: 21147175