Showing posts with label semelparity. Show all posts
Showing posts with label semelparity. Show all posts

Tuesday, April 3, 2018

Animal Mass Suicide and the Lemming Conspiracy

A repost of an original article from April 4, 2012.

Ticked off Norway lemming doesn't like gossip!
Photo from Wikimedia Commons by Frode Inge Helland 
We all know the story: Every few years, millions of lemmings, driven by a deep-seated urge, run and leap off a cliff only to be dashed on the rocks below and eventually drowned in the raging sea. Stupid lemmings. It’s a story with staying power: short, not-so-sweet, and to the rocky point.

But it is a LIE.

And who, you may ask, would tell us such a horrendous fabrication? Walt Disney! Well, technically not Walt Disney himself… Let me explain:

The Disney Studio first took interest in the lemming mass suicide story when, in 1955, they published an Uncle Scrooge adventure comic called “The Lemming with the Locket” illustrated by Carl Barks. In this story, Uncle Scrooge takes Huey, Dewey and Louie in search of a lemming that stole a locket containing the combination to his vault … but they have to catch the lemming before it leaps with all his buddies into the sea forever. Three years later, Disney further popularized this idea in the 1958 documentary White Wilderness, which won that year’s Academy Award for Best Documentary Feature. A scene in White Wilderness supposedly depicts a mass lemming migration in which the lemmings leap en masse into the Canadian Arctic Ocean in a futile attempt to cross it.


In 1982, the fifth estate, a television news magazine by the CBC (that’s the Canadian Broadcasting Corporation), broadcast a documentary about animal cruelty in Hollywood. They revealed that the now infamous White Wilderness lemming scene was filmed on a constructed set at the Bow River in Canmore, Alberta, nowhere near the Arctic Ocean. Lemmings are not native to the area where they filmed, so they imported them from Churchill after being purchased from Inuit children for 25 cents each. To give the illusion of a mass migration, they installed a rotating turntable and filmed the few lemmings they had from multiple angles over and over again. As it turns out, the lemming species filmed (collared lemmings) are not even known to migrate (unlike some Norwegian lemmings). Worst of all, the lemmings did not voluntarily leap into the water, but were pushed by the turntable and the film crew. Oh, Uncle Walt! How could you?!

Norway lemmings really do migrate en masse, but they don't commit mass suicide.
Drawing titled Lemmings in Migration, in Popular Science Monthly Volume 11, 1877.
As far as we know, there are no species that purposely hurl themselves off cliffs to die en masse for migration. But, strangely enough, North Pacific salmon do purposely hurl themselves up cliffs to die en masse for migration. And what, you may ask, is worth such a sacrifice? Sex, of course!

Migrating sockeye salmon thinking about sex.
Photo from Wikimedia Commons by Joe Mabel.

The six common North Pacific salmon species are all anadromous (meaning that they are born in fresh water, spend most of their lives in the sea and return to fresh water to breed) and semelparous (meaning they only have a single reproductive event before they die). After years at sea, salmon swim sometimes thousands of miles to get to the mouth of the very same stream in which they were born. Exactly how they do this is still a mystery. Once they enter their stream, they stop eating and their stomach even begins to disintegrate to leave room for the developing eggs or sperm. Their bodies change in other ways as well, both for reproduction and to help them adapt to fresh water. They then swim upstream, sometimes thousands of miles more, and sometimes having to leap over multiple waterfalls, using up their precious energy reserves. Only the most athletic individuals even survive the journey. Once they reach the breeding grounds, the males immediately start to fight each other over breeding territories. The females arrive and begin to dig a shallow nest (called a redd) in which she releases a few thousand eggs, which are then fertilized by the male. They then move on, and if they have energy and gametes left, repeat the process with other mates, until they are completely spent. If the females have any energy left after laying all their eggs, they spend it guarding their nests. Having spent the last of their energy, they die and are washed up onto the banks of the stream.

Now that’s parental commitment! So the next time your parents start laying on the guilt about everything they’ve given up for you, share this nugget with them and remind them it could be worse…


Want to know more? Check these out:

1. Learn more about semelparity here

2. Learn more about salmon reproduction at Marine Science

3. And learn even more about salmon reproduction with this awesome post by science blogger and Aquatic and Fishery Sciences graduate student, Iris. Her current blog posts can be found here.

4. Ramsden E, & Wilson D (2010). The nature of suicide: science and the self-destructive animal. Endeavour, 34 (1), 21-4 PMID: 20144484

Monday, November 16, 2015

Animal Mass Suicide and the Lemming Conspiracy

Ticked off Norway lemming doesn't like gossip!
Photo from Wikimedia Commons by Frode Inge Helland
We all know the story: Every few years, millions of lemmings, driven by a deep-seated urge, run and leap off a cliff only to be dashed on the rocks below and eventually drowned in the raging sea. Stupid lemmings. It’s a story with staying power: short, not-so-sweet, and to the rocky point.

But it is a LIE.

And who, you may ask, would tell us such a horrendous fabrication? Walt Disney! Well, technically not Walt Disney himself…


Today I am revisiting an article I wrote in the early days of The Scorpion and the Frog, explaining animal mass suicide and the role of Disney in creating one of the greatest animal behavior hoaxes of all time. You can read the article in it's entirety here.

Monday, August 24, 2015

The Weirdest Animals on Earth: 12 Amazing Facts About Octopuses


Photo of a day octopus by
Ahmed Abdul Rahman available
at Wikimedia Commons.
1. The plural of octopus is octopuses. How an English word is pluralized depends, in part, on its origins. Latin words that end in –us are generally pluralized by replacing the –us with an –i (the plural of alumnus, for example, is alumni). But octopus is not Latin – It comes from the ancient Greek word októpous, whose plural is októpodes. Although octopodes is technically correct, since it has been adopted into the English language, the word is now pluralized in the English way, making it octopuses. So octopi is commonly used but not technically correct, octopodes is technically correct but not commonly used and octopussies is just plain wrong.

2. Octopuses are mollusks. This means that they are not only closely related to squid and cuttlefish, but also to clams, oysters, snails and slugs.

3. Octopuses are crazy-smart. They can solve problems, learn from watching others, use tools, and remember experiences. They even have personalities and play with toys. Check this out:



4. Octopuses have nine brains! Rather than a large centralized brain like ours, octopus brains are more like the internet. Their main CPU is a fairly small brain in their head, but each of their eight arms has an additional brain of its own. In fact, two-thirds of an octopus’ neurons are in the arms, which can independently attach to things, push things, and even smell things. They can even react after they have been severed! Not only that, but their severed arms recognize their previous owner:



5. If an octopus loses an arm, it can grow back. Those crazy arms are like the brooms in Disney's Sorcerer's Apprentice in Fantasia!

6. Octopuses are amazing camouflage artists. Their soft bodies can squeeze into ridiculously small cracks and crevices and take on any number of shapes. A 50-pound octopus, for example, can squeeze through a 2-inch hole! They can also change the color and texture of their skin to match their background.


The mimic octopus, the ultimate master of disguise, doesn’t just imitate their background, but also flounders, starfish, poisonous lionfish, and sea snakes.



A vertebrate eye (left) versus an octopus eye (right).
1: Retina, 2: Nerve fibers, 3: Optic nerve, 4: Blind spot.
Image by Jerry Crimson Mann at Wikimedia.
7. Octopuses don’t have visual blind-spots. Most animal eyes detect light patterns when light travels to the retina (the layer in the back of the eye) and falls on photoreceptor cells, causing the cells to send electrical signals through the optic nerve to the brain. Vertebrate photoreceptor cells face backwards, so their nerve fibers come in front of the retina and then exit the eye together through the optic nerve, creating a small region in the back of the eye with no photoreceptor cells. If light falls on this spot, we literally will not see it, although our brain will compensate for this missing light by imagining what should be there based on the rest of what we see. We call this our blind spot. You can test your blind spot by closing your left eye and focusing your right eye on the “R” below. Move your face towards or away from the screen until the “L” disappears. You can test your left eye by staring at the “L” in the same way.
In octopus eyes, the photoreceptor cells face forwards and the nerve fibers go behind the retina. This means that they have a continuous layer of photoreceptor cells and no blind spot.

8. Octopuses are more blue blooded than police officers. Their blood is truly blue, due to the fact that they don’t have hemoglobin, our respiratory pigment that contains iron and turns red when it binds to oxygen. Rather, they have hemocyanin, which contains copper and turns blue when oxygen binds to it.

9. Octopuses have three hearts! They have two small hearts that each pump blood through the gills and a main systemic heart that collects the blood and pumps it through the circulatory system.

10. Octopus ink is a defensive chemical concoction. It not only obscures the view of an attacker, but it also contains a chemical that irritates the predator’s eyes and temporarily paralyzes its sense of smell.

11. Octopuses bite with a bird-like beak and venomous saliva, which is mostly used to subdue prey. Of the approximately 300 octopus species, only the small blue-ringed octopus is known to be deadly to humans.

12. Octopuses die after they mate for the first time. And they mate in an odd way too: males use the tip of their third arm on the right to either insert their spermatophores (sperm packets) directly into the female’s tubular breathing funnel or he just hands it to her (The tip of the third right arm can be used to tell if an octopus is male or female). If he hands it to her, she accepts it with one of her right arms (we don’t know why they’re right-handed this way). Then the males go off to die. The females eventually lay up to 400,000 fertilized eggs, although they can wait months before they do this. She tends them and guards them at the exclusion of all else until they hatch, at which point her body rapidly deteriorates as her cells die off.


Monday, June 22, 2015

Suicidal Sex

A brown antechinus. Males of this species mate like crazy
for two weeks, then die. Photo by Alan at Wikimedia.
Although most species breed repeatedly over their lifetimes, a select few invest everything they’ve got in a single reproductive bout, after which they keel over and die. This strategy, called semelparity, can be beneficial in species that can have many offspring at once and that are not likely to survive long enough for a second breeding attempt anyway. It is most commonly seen in plants, invertebrates and some fish. It is a rare strategy in mammals, in part because mammalian females do not have many offspring at once and they need to live long enough to care for their young after they are born, which dying early would obviously prevent. Despite this, there are over a dozen species of mammals of which all the males die after their one and only breeding season. How could this possibly be adaptive?


Today at Accumulating Glitches, I talk about how patterns of insect abundance and competitive sperm have pushed some mammals to mate themselves to death! Check out the article here.

Monday, June 15, 2015

Loving to Death

The brown antechinus may look like a
mouse - but that is where the similarities
end. Photo by Glen Fergus at Wikimedia.
Although most animal species breed multiple times throughout their lives, a few oddballs put everything they've got into a single reproductive season, after which they promptly die. This is a rare strategy (for obvious reasons), especially in mammals. One Australian mammal, the brown antechinus, is just odd enough to pull it off.

The brown antechinus is a small insectivorous mouse-sized critter from Australia that in fact is not a mouse at all. It is a marsupial; but unlike kangaroos and koalas, females do not carry their young in a pouch, but rather let them hang off their eight teats for four months. All males die when they are 11 months old (if not sooner) after a single 2-3 week long mating season during which they do little else than mate as often as possible. The mating season leaves all the males (whether mated or not) sterile, coursing with stress hormones, immunosuppressed, and riddled with microorganisms and parasites. Shortly thereafter all the males die, balding and bleeding messes.

The reproductive strategy of putting everything you've got into a single mating season and then dying is only an advantage if you can have many offspring in that single reproductive event. Male brown antechinuses can only succeed in this suicidal mating strategy if they father many of the young of many of the females. As a result, both male and female brown antechinuses are promiscuous (mate with many individuals).

Male brown antechinuses are generally bigger than females, and DNA testing has shown us that in the wild, larger males and males with bigger testes impregnate the most females. Diana Fisher and Andrew Cockburn from Australian National University tested whether larger male brown antechinuses were more likely to get the girls because females were more likely to choose them or because they were outcompeting other males.

Diana and Andrew trapped brown antechinuses and brought them into the lab. In one test, they placed three males in separate nest boxes next to one another in an arena and allowed females to choose among them and mate with whichever one she chose. Surprisingly, when presented with this choice, females did not consistently choose the largest males. They didn't even check them all out - The females mated with whatever male happened to be in the first nest box she entered.

When the researchers put three males into a single nest box and allowed the females to mate, she almost always immediately mated with one of the three males. The next day, the researchers put the female in a nest box with either the two losers from the day before or with two randomly chosen males she did not know. On this second day, females presented with two strangers immediately mated with one male, whereas females presented with the two losers from the day before were more likely to spend more time evading both males, but often eventually mated with one of them. On the third day, the researchers put the female in a nest box with either the loser from the previous two days or with another randomly chosen stranger. Nine out of ten females paired with a stranger mated with him on this third day, whereas only one female paired with a double-loser was willing to mate with him at all. Males that successfully mated on the first day were generally the largest of the three. Loser males that mated on the second day were generally the second-largest and unsuccessful males were generally the smallest.

Interestingly, when given a choice of males one at a time, female brown antechinuses do not seem to care at all about male size. But when males are directly competing with one another, the largest male seems to get the girl. It appears that body size plays a role in the dominance interactions among the males, and that females are paying attention to how the males relate to one another. Additionally, larger males that were more successful in mating also lived longer and had fewer parasites. This could be because it is more stressful to be a loser than to be a winner. Stress increases the production of stress hormones, which in turn reduces immune function. In all of these ways, bigger males are more likely to father more young, who in turn will be more likely to grow up to be big males too... but not for long...


Want to know more? Check these out:

Fisher, D., & Cockburn, A. (2005). The large-male advantage in brown antechinuses: female choice, male dominance, and delayed male death Behavioral Ecology, 17 (2), 164-171 DOI: 10.1093/beheco/arj012

Doing it to death: suicidal sex in "marsupial mice" at The Conversation

Monday, April 20, 2015

Living to Love or Loving to Death?

Biologically speaking, animals are the most successful when they have the most descendents. Because reproduction is such a major focus of animal life, we invest a lot in it and take a lot of risks for it. During breeding phases, animals often forgo eating or sleeping well, risk getting in fights, expose themselves to predators, and spend lots of energy on finding potential mates and courting them. Because many specific costs and risks an animal must face to reproduce are particular to the species, many reproductive strategies have emerged as a result.

One major division in reproductive strategies is iteroparity versus semelparity. An iteroparous species is one that can have multiple reproductive cycles in its lifetime. They include all birds, almost all mammals, most reptiles, fish and molluscs, and many insects. A semelparous species is one that has a single reproductive period and then dies. Semelparous animal species include many insects (such as cicadas and mayflies), some moluscs (including some octopus), and several fish (including Pacific salmon). Only a handful of species of amphibians, reptiles and mammals are semelparous.

A silvereye mother feeds her clutch of chicks. She will have another one next year.
Photo by Benjamint444 at Wikimedia Commons.

The advantages to being an iteroparous species seem obvious (we are one, after all). For one thing, losing your virginity isn't a death sentence. This means that if we are not very good at finding or courting a mate, sex, or parenting the first time around, we get more opportunities to improve. It means that if the conditions are crappy in one breeding season, another season will come around later. And it means that with every breeding season that you have offspring, your individual "success" improves.

Pacific salmon spawn their one and only time. Photo by Steve Hillebrand at
the U.S. Fish and Wildlife Service, available at Wikimedia Commons.

The advantages to being a semelparous species are less obvious. What possible advantages can there be to dying after your first breeding season? But if we think about the "success" of an animal being how many successfully reproducing offspring it has, and not how long it lives, this strategy starts to make sense. A semelparous animal can put everything it's got into its one reproductive event. There is no point in holding back if you're never going to get another shot. As a result, semelparous species usually produce more offspring in their one reproductive event than iteroparous species do in any of theirs.

Several theoretical models have emerged to predict under which circumstances a species would use an iteroparous strategy versus a semelparous strategy. It would make sense that species that have a greater risk of dying early would benefit more from a semelparous strategy. Species in which each additional offspring is less costly to produce and care for than the previous offspring would seem to benefit from an iteroparous strategy. However, strangely enough, the data we have on animal reproductive strategies do not clearly show these patterns.

We still have a lot to learn about these reproductive strategies and the complexities of what makes a species live to keep on loving or love to their death.

Wednesday, June 5, 2013

Cicadian Rhythms: Why Does The 17-Year Cicada Emerge Like Clockwork?

Does your back yard look like this?
This swarm of periodical cicadas was photographed by Greg Hume at Wikimedia.
The 2013 Swarmageddon is here! After years of their absence, cicadas are overrunning parks, forests and communities all across the central-eastern United States. Periodical cicadas (from the genus Magicicada) are known for their synchronized emergence at 13- and 17-year intervals. Simply the fact that they can live this long is extraordinary: periodical cicadas have the longest life span of all insect species! But their precise 13- and 17-year emergence cycles have long been an evolutionary enigma.

Today I am over at Accumulating Glitches talking about periodical cicadas! I ponder questions like: How do periodical cicadas know when to emerge (and where are they before that)? How did different species living in the same regions get synchronized to the same cycle? And what evolutionary pressures led to life cycles that are precisely 13- and 17-years long?

Check it out here!

And to find out more, check these out:

1. Koenig, W., & Liebhold, A. (2013). Avian Predation Pressure as a Potential Driver of Periodical Cicada Cycle Length The American Naturalist, 181 (1), 145-149 DOI: 10.1086/668596

2. Koenig WD, Ries L, Olsen VB, & Liebhold AM (2011). Avian predators are less abundant during periodical cicada emergences, but why? Ecology, 92 (3), 784-90 PMID: 21608486

Wednesday, April 4, 2012

Animal Mass Suicide and the Lemming Conspiracy

Ticked off Norway lemming doesn't like gossip!
Photo from Wikimedia Commons by Frode Inge Helland 
We all know the story: Every few years, millions of lemmings, driven by a deep-seated urge, run and leap off a cliff only to be dashed on the rocks below and eventually drowned in the raging sea. Stupid lemmings. It’s a story with staying power: short, not-so-sweet, and to the rocky point.

But it is a LIE.

And who, you may ask, would tell us such a horrendous fabrication? Walt Disney! Well, technically not Walt Disney himself… Let me explain:

The Disney Studio first took interest in the lemming mass suicide story when, in 1955, they published an Uncle Scrooge adventure comic called “The Lemming with the Locket” illustrated by Carl Barks. In this story, Uncle Scrooge takes Huey, Dewey and Louie in search of a lemming that stole a locket containing the combination to his vault … but they have to catch the lemming before it leaps with all his buddies into the sea forever. Three years later, Disney further popularized this idea in the 1958 documentary White Wilderness, which won that year’s Academy Award for Best Documentary Feature. A scene in White Wilderness supposedly depicts a mass lemming migration in which the lemmings leap en masse into the Canadian Arctic Ocean in a futile attempt to cross it.


In 1982, the fifth estate, a television news magazine by the CBC (that’s the Canadian Broadcasting Corporation), broadcast a documentary about animal cruelty in Hollywood. They revealed that the now infamous White Wilderness lemming scene was filmed on a constructed set at the Bow River in Canmore, Alberta, nowhere near the Arctic Ocean. Lemmings are not native to the area where they filmed, so they imported them from Churchill after being purchased from Inuit children for 25 cents each. To give the illusion of a mass migration, they installed a rotating turntable and filmed the few lemmings they had from multiple angles over and over again. As it turns out, the lemming species filmed (collared lemmings) are not even known to migrate (unlike some Norwegian lemmings). Worst of all, the lemmings did not voluntarily leap into the water, but were pushed by the turntable and the film crew. Oh, Uncle Walt! How could you?!

Norway lemmings really do migrate en masse, but they don't commit mass suicide.
Drawing titled Lemmings in Migration, in Popular Science Monthly Volume 11, 1877.
As far as we know, there are no species that purposely hurl themselves off cliffs to die en masse for migration. But, strangely enough, North Pacific salmon do purposely hurl themselves up cliffs to die en masse for migration. And what, you may ask, is worth such a sacrifice? Sex, of course!

Migrating sockeye salmon thinking about sex.
Photo from Wikimedia Commons by Joe Mabel.

The six common North Pacific salmon species are all anadromous (meaning that they are born in fresh water, spend most of their lives in the sea and return to fresh water to breed) and semelparous (meaning they only have a single reproductive event before they die). After years at sea, salmon swim sometimes thousands of miles to get to the mouth of the very same stream in which they were born. Exactly how they do this is still a mystery. Once they enter their stream, they stop eating and their stomach even begins to disintegrate to leave room for the developing eggs or sperm. Their bodies change in other ways as well, both for reproduction and to help them adapt to fresh water. They then swim upstream, sometimes thousands of miles more, and sometimes having to leap over multiple waterfalls, using up their precious energy reserves. Only the most athletic individuals even survive the journey. Once they reach the breeding grounds, the males immediately start to fight each other over breeding territories. The females arrive and begin to dig a shallow nest (called a redd) in which she releases a few thousand eggs, which are then fertilized by the male. They then move on, and if they have energy and gametes left, repeat the process with other mates, until they are completely spent. If the females have any energy left after laying all their eggs, they spend it guarding their nests. Having spent the last of their energy, they die and are washed up onto the banks of the stream.

Now that’s parental commitment! So the next time your parents start laying on the guilt about everything they’ve given up for you, share this nugget with them and remind them it could be worse…


Want to know more? Check these out:

1. Learn more about semelparity here

2. Learn more about salmon reproduction at Marine Science

3. And learn even more about salmon reproduction with this awesome post by science blogger and Aquatic and Fishery Sciences graduate student, Iris. Her current blog posts can be found here.

4. Ramsden E, & Wilson D (2010). The nature of suicide: science and the self-destructive animal. Endeavour, 34 (1), 21-4 PMID: 20144484