Wednesday, January 1, 2014

Metabolism and Body Size Influence the Perception of Movement and Time

Zoetropes like this one have been used
for almost 2000 years. If you look in the
slits from the side, the image appears to
be animated. Image by Andrew Dunn
at Wikimedia Commons.
When we watch TV or a movie, we are essentially watching a series of still images presented in rapid succession… so rapid, in fact, that we perceive them to be a single moving image. The ability of movie-makers to convince us that still images are fluid in time is based on our physiology. Specifically, moving-pictures, as they were once called, rely on our critical flicker fusion frequency (CFF), the lowest speed at which we perceive a flashing light source to be a constant light. But we don't have our CFF so we can enjoy movies and TV; it came about from our need to identify and track moving objects.

The ability to identify and track moving objects is critically important for finding and catching prey, avoiding predators, and finding mates. It is these visual abilities that rely on an animal’s CFF. An animal with a low CFF will miss many visual details, like watching your TV with a fast-forward function that jumps ahead 15 seconds at a time. An animal with a high CFF will see all the details that happen in between with a fine-time-scale resolution. But if having a high CFF conveys such an advantage, why don’t all animals have a high CFF?

This week at Accumulating Glitches I talk about how an animal's size and metabolism can influence how it sees the world. Check it out here.

And to learn more, check this out:

Healy, K., McNally, L., Ruxton, G.D., Cooper, N., & Jackson, A.L. (2013). Metabolic rate and body size are linked with perception of temporal information Animal Behaviour, 86, 685-696 DOI: 10.1016/j.anbehav.2013.06.018

No comments:

Post a Comment