Monday, January 19, 2015

Why You Can’t Hibernate the Winter Away

You open your eyes, slap the alarm, and pull the covers a little tighter around your shoulders. It’s still dark outside and you dread the moment that you step out from under the warm comforter and the cold sucks your breath out. Can’t you just hibernate and sleep the winter away?

A dormouse in his snuggly hibernation state.
Image by Krysztof Dreszer at Wikimedia.
Actually, no. Hibernation and sleep are two completely different physiological processes (shown by studies of brain function). And chances are, you don’t have the physiological bits needed to hibernate safely.

Hibernation has more to do with energy and body temperature than it does with sleep. Hibernation is defined as a process in which an animal allows its body temperature to approximate the environmental temperature for several days or longer. It is a strategy that some animals use during periods of food shortage to conserve the energy that would normally be used to generate body heat. When food is scarce in the winter, the animal will lower its metabolism (the burning of food molecules to create energy and heat), which will result in the animal having less energy (and entering a sleep-like state) and less heat (until the body approaches the environmental temperature). So really, hibernation is the reduction of metabolism when food is scarce. Lack of activity and cold body temperatures are just the by-products.

Almost all species that hibernate are small mammals, including some hamsters, dormice, jumping mice, ground squirrels, marmots, woodchucks, bats, marsupials and monotremes. Bears, common examples of hibernating species, are actually debated by scientists as to whether they should even be considered hibernators due to the fact that their metabolisms and body temperatures do not decline as much as those of other hibernating species. The only bird species known to hibernate is the poorwill.

Each hibernating species has a specific range of body temperatures that their body can endure. Their first line of defense is to find a hibernaculum (a chamber or cavity in which to hibernate that is more insulated than the exposed environment). If the hibernaculum becomes so cold that the animal’s body temperature drops below its minimum endured range, it will either increase its metabolism slightly to raise its body temperature or it will arouse (wake up). Arousal is the process of increasing metabolic heat production to near-normal levels. All hibernating species seem to undergo multiple periods of temporary arousals during hibernation and scientists are still unsure why. Increasing the metabolism and body temperature from lower levels is an energetically costly process (similar to how your car uses more gas to accelerate than to maintain a higher speed). In most hibernating species, the process of increasing the metabolism uses a specialized tissue called brown fat.

Fat cells come in two main types: white fat and brown fat. White fat, the squishy stuff that we constantly try to diet and exercise away, is filled with lipids (fats) that we store to generate energy in the future. Brown fat cells also contains lipids, but they are specialized to break them down faster. Brown fat is found in newborn mammals and adult hibernators and is commonly located on the upper back, neck, chest and belly (like a vest) and around major arteries. Brown fat cells have lots of mitochondria (the metabolic parts of the cell that break down food molecules like lipids to generate energy). Brown fat mitochondria is specialized in that they have a protein called uncoupling protein 1 that causes them to generate heat rather than energy when they break down lipids. When the body becomes stressed, it releases norepinephrine, a stress hormone, which causes brown fat cells to increase the rate at which they break down lipids to generate heat. This heat warms the major arteries and increases blood flow, which then distributes the heat throughout the body.

A PET scan shows brown fat in a human.
Image by Hellerhoff at Wikimedia.
Although humans are born with a fair amount of brown fat, we lose it as we age. More specifically, it converts to white fat. We used to think that we lost it completely, but in recent years we have learned that some lean adults maintain a few pockets of brown fat in their necks and chests that obese people are more likely to lose. Researchers are currently exploring if and how we can convert some of our adult white fat to brown fat in order to increase our metabolisms and potentially combat obesity and diabetes.

So for now, we can’t hibernate the winter away. But continuing research into hibernating animals may hold an important secret to our own health.

3 comments:

  1. Love me love me not...the quintessential simplicity factor of the nose
    http://www.psypost.org/2015/01/new-research-nose-knows-reveals-unexpected-simplicity-30957

    ReplyDelete
  2. Don't forget about amphibians....many hibernate.

    ReplyDelete
    Replies
    1. Great point! But because amphibians are ectothermic, they don't hibernate in the same way that endothermic animals like mammals and birds do. They do have some similar processes though, and some can even freeze solid: http://the-scorpion-and-the-frog.blogspot.com/2014/01/freezing-winter-away.html

      Delete