Wednesday, February 21, 2018

The Love Chemical of 2018


Hello and welcome to the Love Chemical Pageant Results Show! The voting results are in, and today we get to crown the Love Chemical of 2018… Vasopressin! Now let’s get to know Vasopressin a little bit better.

Vasopressin (also known as Antidiuretic Hormone) is a molecule that is widely involved in the balance of water and ions (such as salts) in mammals. (Other taxonomic groups have variations of it as well). But this chemical has gone to our heads, influencing behavior as well.

In the brain, vasopressin acts on a specific receptor type, called vasopressin 1a receptor (V1aR). There are lots of V1aR receptors in brain areas that regulate social and emotional behaviors. When vasopressin binds to many of these receptors, it can result in aggression, territoriality, and fight-or-flight responses. It is also involved in the formation of memories that are necessary to avoid danger. Interestingly, males and females usually have different patterns of where in the brain these V1aR receptors are.

Although we often think of love and aggression as opposites, the life-preserving roles of vasopressin have made it well-suited to become an important chemical of love. In animals, pair bonding (the formation of a strong and unique connection between mates of a socially monogamous species) is often accompanied by an increase in aggression towards non-mates. This aggression can serve to protect the mate and family, but also to reject competitive suitors towards either partner.

Photo of a prairie vole pair from Young, Gobrogge, Liu and Wang paper
in Frontiers in Neuroendocrinology (2011)

Researchers often use several closely-related vole species to study how the brain regulates pair bonding; While prairie voles and pine voles are monogamous, raise their offspring with their partners, and defend their homes and families, montane voles and meadow voles are promiscuous and females raise their young by themselves. Oddly, giving monogamous vole species vasopressin increases their preference for spending time with their mate, their parental behaviors, and their selective aggression against outsiders, but giving promiscuous vole species vasopressin does not. Vasopressin is also more likely to increase these monogamous behaviors in males more than in females. Both males and females respond differently to vasopressin depending on their reproductive status.

It turns out, the pattern of V1aR receptors in the brain is similar between the monogamous prairie and pine voles, but different from the promiscuous montane and meadow voles. Genetic factors drive this difference, and if you alter the gene for the V1aR of a promiscuous species to be more like the prairie vole’s version of the gene, the previously promiscuous species behaves in a monogamous way! The reason promiscuous vole species don’t behave in a monogamous way when given vasopressin is because they don’t naturally have the V1aR receptors in certain brain regions to respond to it that way.

We are still learning about the role of vasopressin in pair bonding behaviors. Much of what we know has focused on these vole species, and we know much less about vasopressin’s involvement in pair bonding in other species. We also don’t know as much about the role of vasopressin in females across different reproductive stages. But one thing is for sure: Love wouldn’t be the same without Vasopressin!


Want to know more? Check these out:
Carter, C.S. (2017). The Oxytocin–vasopressin Pathway in the Context of Love and Fear. Frontiers in Endocrinology, 8(356): 1-12.

Phelps, S.M., Okhovat, M. and Berrio, A. (2017). Individual Differences in Social Behavior and Cortical Vasopressin Receptor: Genetics, Epigenetics, and Evolution. Frontiers in Endocrinology, 8(537): 1-12.

Tickerhoof, M.C. and Smith, A.S. (2017). Vasopressinergic Neurocircuitry Regulating Social Attachment in a Monogamous Species. Frontiers in Endocrinology, 8(265): 1-10.

No comments:

Post a Comment